

No matter which option we have chosen from the Add Primitive options, once we move the mouse pointer back into the 3D Viewport that mouse pointer changes into a grid as shown below.

With the Cube's base defined, moving the mouse (with no buttons pressed) defines the cube's third dimension.

In the example below, Add Cube has been selected. One corner of the cube's base is selected by starting a mouse drag operation. The diagonally opposite corner is defined by releasing the mouse button.

A final click of the mouse completes the operation and displays the Cube in solid mode. complete, the mouse pointer returns to a grid showing it is ready to add another cube

Like Cubes created with the Add>Mesh>Cube option, our newly created Cube, also creates an entry in the Last Op panel at the bottom-left of the 3D Viewport.

The Size setting in the Last $O p$ panel s not really relavant since what we've just created is unlikely to be a true cube shape. Instead, if we want to modify its size, we can do this in the Sidebar.

If we do make changes to the dimensions, we must remember to reset the scaling factors to 1.0 using the Object>Apply>Scaling menu option.

If we move the mouse pointer over the face of an existing object, the grid will realign itself to lie on that face.

However, if we've set the Cube size solely by dragging to define the base and height, the Scale values will all remain at 1.0 irrespective of the Cube's actual dimensions.

This means that, when we drag out a new Cube, its base lies flat on the existing face.

Depth determines the orientation of the new Cube's base.

Surface is the default value, and, as we've already seen, it orientates the base to any face under the mouse pointer. When the new Cube is created away from an existing face, the base lies on the XY plane of the 3D cursor's axes.

Cursor Plane is the next option for the Depth parameter. Using this option, the grid under the mouse pointer will reorientate itself when it moves over an existing face...

But any builds that appear to be on the surface of an existing object...
... are illusions which disappear when we change viewpoint.

Cursor View is the last Depth value. To understand how this affects the positioning of a new Cube we'll need to create a Plane which is perpendicular to our viewpoint.

Depth Cursor View v

But when we attempt to sit new Cubes on the original one, again we see that the attempt has failed.

In fact, all of the new Cubes lie on one of the planes of the 3D cursor.

With the Plane hidden, we can see that the grid realigns itself as the mouse pointer moves over a face.

But if we reshow the Plane, we can see that at least one vertex of every new Cube sits on that Plane.

The next parameter is Orientation. which determines the direction in which the new Cube's Local axes lie.

When set to Surface, the Local z-axis of the new Cube points in the same direction as the normal of the face it is positioned on.

When the new Cube is not placed over a face, then its Local axes orientation is determined by the setting in the 3D Viewport's Transformation Orientation. If this is Global, then the new Cube's Local axes are aligned with the World axes.

When Transformation Orientation is set to Local, then the new Cube's Local axes align with the Local axes of the last selected object.

When Orientation is set to Default, then the new Cube's Local axes alignment is based solely on the Global or Local axes of the last selected item depending on the Transformation Orientation setting. The base alignment will not change when the mouse pointer is over an existing face.

Blender Basics: Meshes in Object Mode

Snap To is the next parameter. Its default value is Geometry. This means that when we hold down the Ctrl key to switch on snapping the corner of the new Cube can be attached to a specific part of an existing object.

The final parameter available to Add Cube is shown as an ellipsis.

If Auto Axis is checked, the final dimension is determined by the viewpoint at the time of the new Cube's creation.

There are two parameters under the heading Base. Origin determines which part of the base the first mouse click represents. Edge is a base corner. Center is the base centre.

Height is the next heading in this panel. Again the two parameters are labelled Origin and Aspect. Origin determines if the base marks one end of the Cube (Edge) or its centre (Center).

Alt is a keyboard

shortcut to switch
Origin value. This works for the Base and Height setting, depending on which part of the Cube build you are currently on.

Shift switches Aspect setting for the Base or Height.

Aspect, when set to Free allows the base to be oblong or square; when set to Fixed, the base is always square as it resizes.

Aspect defines the Cube's third dimension. When set to Free , the Cube can be any length in its third dimension; when set to Fixed, its third dimension matches the longest of the other two dimensions.

These two parameters determine the vertex count and face-fill type for any future Cones created using Add Cone. A newly created Cone can have its parameters adjusted in the Last Op panel as usual.

Vertices	10	Base Fill Type	N-Gon $\quad v$

Add Cylinder has exactly the same parameters as Add Cone. And, like the mesh created by Add Cone, the base need not be circulare.

Add UVSphere has the parameters Segments and Rings. If a truely spherical shape is required, hold down the Shift key during its creation.

Segments	32	Rings	16

Add IcoSphere has a single parameter, Subdivisions. Don't set this more than a single digit as this will tax the processor and memory. Again, we need to hold down Shift during creation iif a spherical shape is required.

Subdivisions 3

