At the very top of the Array modifier page is a row of icons. These appear on every modifier page.

The On Cage icon controls access to any new elements created by the modifier when working in Edit mode. When the icon is deselected, those elements cannot be accessed directly.

The next icon is the Edit Mode Display. If this option is selected, the effects of the modifier will be visible when working in Edit Mode, otherwise the modifiers effect only appears in Object Mode.

In the case of the Array modifier, access to those additional elements makes little difference, since any change to the original or a copy, is duplicated in all the other objects.

The third icon, Realtime 3D Viewport Display, has a higher priority than the previous two, with the modifier's effect only displayed in the 3D Viewport when this option is activated.

The Render icon must be on if the effect of the modifier is to appear in the final render image.

Although each Cube is now a separate mesh after clicking on Apply, they are joined together as a single object (equivalent to linking meshes using (trl+J) with a single origin.

Single Object

Now, we need to press \mathbf{P} and in the popup menu, choose By Loose Parts to separate each mesh.

Next, we come to another down button. This lists two options that are useable at this time. Clicking on Apply will turn the effects created by the modifier into real meshes and remove the modifier page since its job is now complete.

Fixed C

Apply

Ctrl A
Shift D
Copy to Selected

- Move to First
- Move to Last

Pin to Last

To separate the Cubes so that each is an independent object, we must enter Edit Mode and press \mathbf{A} to select all of the elements.

Select all

When we return to Object Mode we can see that each Cube can now be selected separately. However, each Cube has its origin in the same place: at the centre of the original Cube.

To move each origin to the middle of its own mesh we need to select all the objects and then choose the menu option Object>Set Origin>0rigin to Geometry.

Duplicate is the next option in the Array modifier's dropdown list. Of course, we'll only see this if we haven't clicked on Apply.

Duplicate creates another instance of the Array modifier. This copy applies the Array modifier to the results created by the first modifier.

And if we change the parameter values in the second Array modifier, we can, for example, move the position of the latest copies.

And in the Properties Editor's Modifiers' page,

 there are now two copies of the Array modifier listed.Notice that each has its own unique name. Here the default names are used. Array and Array. 001 and that the latest version has the same parameter values as the original.

$>$ Constant Offset

$>$ Object Offset
> Merge
$>$ UVs
$>$ Caps
And if we choose Duplicate in the latest Array modifier, we get yet another copy. The pages have been minised in the screen layout shown below. Note that the latest modifier is named Array. 002

And, if we adjust the Relative Offset values in the third copy of the Array modifier, we can create a cube of Cubes.

Another option is to click on the down arrow button and choose Move to First or Move to Last. Choosing Pin to Last will ensure the selected modifier always comes at the bottom of the list.

This option applies that modifier to all selected items. In this case, that means we get several new Toruses.

If we have more than one object selected when we apply a modifier, it will only be applied to the active object. However, once applied, the third option of the dropdown list, Copy to Selected, becomes activated.

Clicking on the x icon of a modifier will delete it from the selected object.

To demonstrate some of the uses of the Array modifier, we'll start by creating a metal chain. The first step is to create a Torus and shrink it in the Y direction.

To make the two Toruses a single object, we'll select them both and press Ctrl+J.

Ctrl \ddagger Join

For the next example, we'll create a basic shape using three Cubes. First we'll resize in each dimension to resemble a plank of wood.

Next, we'll make a copy (Shift+D), rotate the copy 90° about its x-axis and move it along its x-axis so that it is touching the first Torus.

G \Rightarrow Move along x-axis

Now all we need to do is apply the Array modifier, adjust the Relative Offset in the X direction to around 0.8, and make as many copies as we require.

The second step is to make a copy of the first object and move it in the Z direction.

The third Cube represents the wooden post.
With all three elements selected, we can forge them into a single object by pressing Ctrl+J.

To complete the model, we'll attempt to place a full-sized Cube at either end of the fence. We'll start by creating a new Cube and moving it away from the fence.

Object>Mesh>Cube

Move

On the Array modifier page, we can set the Cap Start and End to the new Cube.

The problem is that we forgot to apply the scale when we created our basic fence element meaning that it has a scale factor of 0.15 in the X and Y directions

Scale:	
X	0.150
Y	0.150
Z	1.000

Selecting the fence element, we now need to apply the scale factor which will tell Blender that the current shape is to be taken as the starting shape with scale values of 1.0 in all three directions.

Object

Iransform		
Set Origin		
Mirror		
Clear		
Apply	Ctrl A	Location
Snap		Rotation
Duplicate Objects	Shift D	Scale
Duplicate Linked	Alt D	Ell Transforms
Join	Ctrl J	Rotation \& Scale

For our next model we'll start with a Cube and resize it in the Y and Z directions.

Those same scale factors have then been applied to any object that is assigned to the Cap Head and End. Hence, the two Cubes change to look like posts. To solve this problem we must first remove the Cap Head and End entries.

With the problems fixed, we can again set the Cube as the Cap Start and End values. After that we can hide the original Cube since we don't want it to appear in the scene.

Next, we'll move the Cube's origin to the World origin (where the $3 D$ cursor is located).

Object

Iransform	-	
Set Origin	-	Geometry to Origin
Mirror	-	Origin to Geometry
Clear	\checkmark	Origin to 3D Cursor
Apply	Ctrl A	Origin to Center of Mas Pe)
Snap	マ	Origin to Center of Mas
Duplicate Objects	Shift D	
Duplicate Linked	Alt D	
Join	Ctri J	
才ौ Copy Objects	Ctri C	
Paste Objects	Ctrl V	
All Asset	,	

we'll select the Cube and apply an Array modifier setting the Count to 60 and the Relative Offsets to (0.0, 0.0, 1.0).

Now, if we rotate the Empty about its z-axis making the 60 copies rotate around 720°, we create out spiral staircase.

After adding an Empty at the World origin...

Object>Empty>Plain Axes

Next we'll attach the modifier to the Empty...

```
\vee [] Array
```


Relative Offset

And to add some realism to the result, we'll include a Cylinder resized to fit in the stairwell. And we mustn't forget to apply the scale!

