
The Official AppGameKit Tier 2 Starter’s Guide: Adding a New Class� 77

In this Chapter:

T Defining a New Class

T	Adding a New Class Attribute to the app Class

T	app Class: Attribute Restrictions

Adding a New Class

78� The Official AppGameKit Tier 2 Starter’s Guide: Adding a New Class

The Die Class

Introduction
To see how we can tackle our games programming using the class-oriented aspects
of C++, we’ll start by creating a new project which, as well as defining the app class,
will also define a Die (dice) class which we can use to display and “roll” a six-sided
die (see FIG-4.1).

Features
Properties of the Die Class

Since this is to be a visual component, we’ll need to know the ID of the image and
sprite used for the die as well as the last value that has been rolled.

When the die is created, we’ll want to load, position and size the image it uses within
a sprite. Positioning and sizing and even using a new image should also be available
after the die has been created. And, of course, we want to be able to roll the die. This
last operation will create both a visual effect and set the value thrown to a random
integer between 1 and 6.

Class Diagrams

In its simplest form a class diagram is a visual representation of the attributes and
operations of a class.

The following features can be added when describing the various elements of the
class:

+ at the start of a property indicates that it is public.

- at the start of a property indicates that it is private

= value		 after a property shows that it is a constant attribute. The
property name should be given in uppercase
OR
after a parameter, giving it’s default value.

underlined		 below a static property.

FIG-4.1

A Visual
Representation of a
Die Class Object

Activity 4.1

Make a copy of the folder CoreMethods and rename the copy UsingADie.

The Official AppGameKit Tier 2 Starter’s Guide: Adding a New Class� 79

«constructor»name	for constructors.

«destructor»name	 for destructors.

«friend»name	 for functions which are friends of the class.

When naming the constructors and the destructor in a class diagram, you can use the
C++ convention of naming them after the class or you can use other terms such as
Create and Destroy or New and Delete.

The class diagram for Die is shown in FIG-4.2.

Implementing the Class
The Die Header File

To implement and test our new class, we’ll start by creating a header file which
contains the code shown in FIG-4.3.

While Visual Studio will automatically include the line

#pragma once
(code shown in FIG-4.3 will go here)

at the start of our new header file to ensure that the header file is copied no more than
once into the final build before compilation, when using Android Studio creating the
new header file will automatically insert the following lines to achieve the same
safeguard:

FIG-4.2

The Class Diagram
for Die

Die

- value : int
- sprID : int
- imgID : int

<<constructor>>Die(fn:char*,sz:�oat,x:�oat,y:�oat)
+Roll() : int
+GetValue() : int
+SetDieSize(sz:�oat)
+SetDiePosition(x:�oat, y:�oat)
+SetDieImage(img:int)

FIG-4.3

The Header File for the
Die Class

class Die
{
	 private:
		 int value;			 //Value thrown

int sprID;			 //ID of sprite used to show dice;
int imgID;			 //ID of image used for dice;

	 public:
Die(char*, float, float, float);
int Roll();
int GetValue();
void SetDieSize(float);
void SetDiePosition(float, float);
void SetDieImage(int);

};

80� The Official AppGameKit Tier 2 Starter’s Guide: Adding a New Class

#ifndef USINGADIE_DIE_H
#define USINGADIE_DIE_H

(code shown in FIG-4.3 will go here)
#endif //USINGADIE_DIE_H

The steps needed to add the new header file to our existing project using Visual
Studio are shown in FIG-4.4. For Android Studio see FIG-4.5.

FIG-4.4

Creating the Header
File for the Die Class in
Visual Studio

With a new copy of CoreMethods renamed as UsingADie, we need to right click
on the project name (Template), choose Add and New Item.

From the dialog box, choose Header
File (.h) and name the file Die.h then
click Add.

The new file will automatically open
up in the edit window, where we can
add the necessary code.

Template

AddNew Item...

Header File(.h)

Die.h Click

class Die
{
 private:

int value; //Value thrown
int sprID; //ID of sprite used to show dice;
int imgID; //ID of image used for dice;

 public:
Die(char*, float, float, float);
int Roll();
int GetValue();
void SetDieSize(float);
void SetDiePosition(float, float);
void SetDieImage(int);

};

FIG-4.5

Creating the Header
File for the Die Class in
Android Studio

After making a copy of CoreMethods and renaming it UsingADie, we need to
display the contents of UsingADie\AGK2Template\src\main\jni.
Right-clicking on jni displays a context menu. Selecting New and C/C++ Header
File will create the empty file we require.

jni New

C/C++ Header File

Right
click

The Official AppGameKit Tier 2 Starter’s Guide: Adding a New Class� 81

Next, we need to create the source code for the new class’s methods.

The constructor loads the image used by the die before creating, sizing and positioning
the sprite used to display the die. It also “rolls” the die to assign it an initial value.

The Roll() method not only assigns the die a new random value between 1 and 6 but
also creates a visual effect of the die being shaken before finally displaying the rolled
value. This method also returns the value that has been generated.

The GetValue() method returns the value currently assigned to the die by the previous
roll.

New AGK2 functions used in these routines are shown in FIG-4.6.

FIG-4.5
(continued)

Creating the Header
File for the Die Class in
Android Studio

In the dialog box, name the file Die
(don’t add the .h extension - Android
Studio will do this automatically)
then click OK.

The new file will be listed within the jni
folder and opened in the edit window,
with comments and the necessary
guard code.

Code created
automatically

//
// Created by User 1 on 15/04/2016.
//

#ifndef USINGADIE_DIE_H
#define USINGADIE_DIE_H

#endif //USINGADIE_DIE_H

Activity 4.2

Load project UsingADie and create a new file called Die.h.

Enter the code given in FIG-4.3 in the new file.

FIG-4.6	 AGK2 Functions Used in Die.cpp

Function Name Parameters Returned Description Example

SetSpriteAnimation

GetImageWidth

GetImageHeight

SetSpriteFrame

Random2

int imgID

int sprID
int width
int height
int frames

int ImgID

int sprID
int frame

int low
int high

None

None

int

int

int

Separates the sprites image into a set of frames.
Frames are width by height pixels and the total
number of frames is frames.

Returns the width of an image in pixels.

Returns the height of an image in pixels.

Sets the sprite’s displayed frame to frame number
frame (Frame numbers start at 1).

Returns a random value lying between low and
high (inclusive).

SetSpriteAnimation(1,20,40,3)
Sprite 1’s image is split into
3 frames each 20 by 40 pixels

int w = GetImageWidth(3)
Returns the width of image 3

int h = GetImageHeight(3)
Returns the height of image 3

SetSpriteFrame(1,3)
Sets sprite 1 to display frame 3

int num = Random2(1,6)
num is set to a random value
between 1 and 6

