

This is an extract from the book

Hands On AGK BASIC
	 by Alistair Stewart

You can purchase the complete publication (approx 900
pages) in either printed or ebook format from

	 The Games Creators [printed version only]
	 http://www.thegamecreators.com/
or
	 Digital Skills [printed or ebook (PDF)]
	 www.digital-skills.co.uk

Other books by Alistair Stewart include:

	 Hands On DarkBASIC Pro Volume 1
	 Hands On DarkBASIC Pro Volume 2
	 Hands On Milkshape

“Hands On AGK BASIC allowed me to jump right
into the AGK programming language and create
dFenz in just a few short weeks”	�

� -Sean Mann, Napland Games

Hands On AGK BASIC
A Beginner’s Guide to Multi-Platform Games Programming

Alistair Stewart

Digital Skills
Milton
Barr
Girvan
Ayrshire
KA26 9TY
United Kingdom

+44(0)1465 861 638tel:
www.digital-skills.co.uk

Copyright © 2012-2013 Alistair Stewart

All rights reserved.

No part of this work may be reproduced or used in any form without the
written permission of the author.

Although every effort has been made to ensure accuracy, the author and
publisher accept neither liability nor responsibility for any loss or damage
arising from the information in this book.

AGK BASIC is produced by The Game Creators Ltd.

Cover Design: Sébastien Leroux

Printed 	 June 2012
Updated 	 February 2013

Title:	 Hands On AGK BASIC

ISBN: 978-1-874107-14-9

Other Titles Available:

Hands On DarkBASIC Pro Vols 1 & 2
Hands On Milkshape

Table of Contents
Foreword	� i
Preface	� iii

Acknowledgements	� iii
How to Get the Most Out of this Book	� iv

Chapter 1 - Algorithms
Designing Algorithms	� 2

Following Instructions	� 2
Control Structures	� 3
Sequence	� 3
Selection	� 4
Complex Conditions	� 10
Iteration	� 14
Data	� 20
Levels of Detail 	� 22
Checking for Errors 	� 26
Summary	� 29

Solutions	� 32

Chapter 2 - Starting AGK
Programming a Computer	� 36

Introduction	� 36
The Compilation Process	� 36
Summary	� 38

Starting AGK	� 39
Introduction	� 39
Starting Up AGK	� 39
The Program Code	� 42
Transferring Your App to a Tablet or Smartphone	� 43
Summary	� 44

First Statements in AGK BASIC		� 45
Introduction	� 45
Print()	� 45
Adding Comments	� 47
PrintC()	� 47
Other Statements which Modify Output	� 48
Summary	� 52

The Second Source File	� 54
A Splash Screen	� 55
Starting a New Project	� 56
App Window Properties	� 57

Measurements	� 57
Summary	� 59

Solutions	� 61

Chapter 3 - Data
Program Data	� 64

Introduction	� 64
Constants	� 64
Variables	� 64
Named Constants	� 68
Summary	� 69

Allocating Values to Variables	� 70
Introduction� 70
The Assignment Statement	� 70
The Print() Statement Again	� 77
Acquiring Data	� 79
User Input	� 87
Summary	� 90

Testing Sequential Code	� 91
Solutions	� 93

Chapter 4 - Selection
Binary Selection	� 98

Introduction	� 98
if	� 98
The Other if Statement	� 107
Summary	� 108

Multi-Way Selection	� 109
Introduction	� 109
Nested if Statements	� 109
The select Statement	� 112
Testing Selective Code	� 115
Summary	� 117

Solutions	� 118

Chapter 5 - Iteration
Iteration	� 124

Introduction	� 124
The while .. endwhile Construct	� 124
The repeat .. until Construct	� 126
The for..next Construct	� 128
Finding the Smallest Value in a List of Values	� 133
The exit Statement	� 134
The do .. loop Construct	� 135
Nested Loops	� 135
Nested for Loops	� 136
Testing Iterative Code	� 137
Summary	� 139

Solutions	� 140

Chapter 6 - A First Look at Resources	
Resources - A First Look	� 146

Introduction	� 146
Images	� 146
Images in AGK 	� 149
Sound	� 156
Music	� 159
Detecting User Interaction	� 163
Text Resources	� 165
Later	� 170
Summary	� 170

Solutions	� 172

Chapter 7 - Spot the Difference Game
Game - Spot the Difference	� 176

Introduction	� 176
Game Design	� 176
Game Code	� 182

Solutions	� 188

Chapter 8 - User-Defined Functions
Functions	� 192

Introduction	� 192
Functions	� 192
Parameters	� 196
Summary	� 206

 BASIC Subroutines	� 207
Introduction	� 207
Creating a Subroutine	� 207

A Library of Functions	� 209
Introduction	� 209
Creating a Library	� 209

Creating Modular Software	� 211
Introduction	� 211
Top-Down Programming	� 212
Bottom-Up Programming	� 219
Structure Diagrams	� 221
Summary	� 222

Solutions	� 224

Chapter 9 - String and Math Functions	
String Functions	� 232

Introduction	� 232
String-Handling Functions	� 232
Creating Your Own String Functions	� 242
Summary	� 248

Math Functions	� 250
Introduction	� 250
Coordinates	� 250
Trigonometric Functions	� 251
Other Math Functions	� 259
Summary	� 262

Solutions	� 265

Chapter 10 - Arrays
Arrays	� 270

Problems with Simple Variables	� 270
One Dimensional Arrays	� 271
Using Arrays	� 276
Dynamic Arrays	� 293
The undim Statement	� 294
Multi-dimensional Arrays	� 294
3-Dimensional Arrays and Higher	� 295
Arrays and Functions	� 296
Summary	� 296

Solutions	� 297

Chapter 11 - Data Types and Operators
Data Storage	� 304

Introduction	� 304
Declaring Variables	� 304
Type Definitions	� 305
Summary	� 310

Data Manipulation	� 311
Introduction	� 311
Other Number Systems	� 311
Shift Operators	� 312
Bitwise Boolean Operators	� 314
A Practical Use For Bitwise Operations	� 317
Summary	� 318

Solutions	� 320

Chapter 12 - File Handling
Files	� 324

Introduction	� 324
Accessing Files	� 324
File Management	� 330
Folder Management	� 331
Zip Files	� 335
Summary	� 336

Solutions	� 338

Chapter 13 - Particles
Particles	� 342

Introduction	� 342
Creating Particles	� 342
Retrieving Particles Data	� 355
Summary	� 359

Solutions		� 361

Chapter 14 - Text
Text	� 366

Introduction	� 366
Review	� 366
Further Text Statements	� 367
Text Character Statements	� 375
Summary	� 385

Solutions	� 389

Chapter 15 - User Input
Virtual Buttons	� 392

Introduction	� 392
Virtual Button Statements	� 392
Using Multiple Virtual Buttons	� 397
Summary	� 399

Keyboard Input	� 400
Introduction	� 400
Text-Input Statements	� 400
Summary	� 404

Edit Box Statements	� 405
Introduction	� 405
Edit Box Statements	� 405
Summary	� 418

Joystick Input	� 421
Introduction	� 421
Virtual Joystick Statements	� 421
Physical Joysticks	� 427
Summary	� 430

Device Dependent Input	� 432
Introduction	� 432
Accelerometer Statements	� 432
Mouse Statements	� 435
Joystick Statements	� 437
Keyboard Statements	� 440
Device Identity	� 442
Summary	� 442

Solutions	� 444

Chapter 16 - Images
Images	� 450

Introduction	� 450
Review	� 450
Further Image Statements	� 450
The ImageJoiner Utility	� 455
Atlas Texture Files and Proportional Fonts	� 456
Manipulating Images	� 457
Image Selection from Storage	� 460
Using a Device’s Camera	� 461
Mapping Images to Sprites	� 463
Summary	� 466

Solutions	� 468

Chapter 17 - Sprites
Sprites	� 470

Introduction	� 470
Review	� 470
Other Sprite Statements	� 471
The Sprite Offset Feature	� 494
Sprite Bounding Areas	� 499
Sprite Groups	� 505
Moving Sprites	� 511
Controlling Speed	� 523
Ray Casting	� 524
Summary	� 532

A Jigsaw Puzzle Game	� 535
Introduction	� 535
The Game	� 535
The Data Files	� 535
Game Layout	� 536
The Game Code	� 537

Solutions	� 541

Chapter 18 - Animated Sprites	
Introduction	� 550
Using an Animated Sprite	� 550
A Card Trick	� 556
Summary	� 558

An Asteroid Game	� 560
Introduction	� 560
Game Layout	� 560
Game Logic	� 561
Game Resources	� 561
Game Code	� 561

Solutions	� 573

Chapter 19 - Screen Handling
Screen Handling	� 580

Introduction	� 580
Screen-Related Statements	� 580
Zooming and Scrolling	� 583
Touch Statements	� 595
Summary	� 602

Secrets of Sync()	� 604
Summary	� 608

Solutions	� 609

Chapter 20 - Physics
Sprite Physics - 1	� 614

Introduction	� 614
Basic Physic Statements	� 614
Physics Collisions	� 628
Physics Sprite Shapes	� 630
Summary	� 634

World Physics	� 636
Introduction	� 636
General Statements	� 636
Forces	� 638
Summary	� 641

Sprite Physics - 2	� 643
Contacts	� 643
Physics Groups and Categories	� 648
Physics Ray Casting	� 653
Summary	� 656

Joints	� 658
Introduction	� 658
Joint Statements	� 658
Summary	� 683

Solutions	� 685

Chapter 21 - Accessing a Network
Multiplayer Games	� 692

Introduction	� 692
Hardware Requirements	� 692
The Host and its Clients	� 692
Multiplayer Statements	� 693
Summary	� 716

Multi-Player Tic Tak Toe	� 718
Introduction	� 718
Game Logic	� 718
Program Code	� 719

HTTP	� 727
Introduction	� 727

HTTP Statements	� 727
Summary	� 736

Solutions 	� 738

Chapter 22 - Bits and Pieces
Date and Time	� 748

Introduction	� 748
Standard Date Statements	� 748
Unix Date Statements	� 749
Time Statements	� 751
Summary	� 752

QR Coding	� 753
Introduction	� 753
QR Code Statements	� 753
Summary	� 755

Advertising	� 756
Introduction	� 756
Ad Statements	� 756
Summary	� 757

Errors	� 759
Introduction	� 759
Error Handling Statements	� 759
Summary	� 760

Benchmarking	� 761
Introduction	� 761
Benchmarking Statements	� 761
Summary	� 765

Paused Apps	� 766
Solutions	� 769

Chapter 23 - 3D Graphics
Concepts and Terminology� 772

Introduction� 772
Modelling Ideas and Terminology� 776
Summary� 783

Creating a First 3D App� 786
Introduction� 786
Statements� 786
User Control of the Camera� 790
Summary� 792

Object Creation and Modification� 793
Creating Primitives� 793
Object Appearance� 798
Transforming Objects� 803

Cameras� 816
Introduction� 816
Camera-Related Statements� 816
Using Camera Commands to Create First Person Perspective� 823
Billboarding� 828

Summary� 829
Lights� 831

Introduction� 831
Directional Lights� 831
Point Lights� 833
Object Reflectivity� 835
Summary� 836

Collisions
Introduction� 837
Ray Cast Statements� 837
Summary� 855

Other 3D Related Statements� 857
Converting Between Screen and 3D Coordinates� 857
Sprite and 3D Depth Settings� 863
The Depth Buffer� 863
Shaders� 866
Quaternion Rotation� 869
Summary� 872

Solutions� 873

Appendix A - ASCII Codes	� 883
Index						� 884

Hands On AGK BASIC: Foreword� xi

Foreword

by Lee Bamber

When I was nine I received my first personal computer, a VIC-20, which was blessed
with over 3K of system memory and a maximum palette of 16 colours. From that
moment my universe was slightly larger than the amount of memory it takes to store
this paragraph of text. In that universe I created lost civilisations, space battles, deep
treks into inhospitable lands and dangerous creatures ready leap out from every dark
corner. Granted most of it happened in the imagination of the player, but my audience
consisted of my parents, my brothers and my uncle who all thought my ‘games’
where amazing.

What was truly amazing was the rate at which the limits of my universe expanded
with more memory, more colours, more speed and a bigger audience to play my
‘games’. We went from back-bedroom build-your-own hobby developers to a global
industry worth Billions, and it happened so quickly we still have the original founders
of this industry working alongside the newest recruits.

Veteran fogies like me can look back and see so much history that when something
new comes along, we can almost instantly compare it to five things it strongly
resembles from our own fading recollections. We can also identify when something
is utterly game-changing, and it usually happens on an epic scale. For me, that
moment was when the term ‘apps’ entered the public consciousness. Before then you
had software you went out and bought, because you needed software. When the idea
of an ‘app’ emerged, it gave ‘software’ a name change and a leviathan marketing
budget to spend to the end of time. We are no longer a community of developers who
write software, we’re a community that creates solutions to make life better, and its
consumers, not developers, who are deciding what those should be.

Here in lies the problem for us poor, overworked developers. We had our plate full
just writing software that worked sufficiently for a period of time on one computer.
Now we have to create solutions for everyone, where-ever they are, when-ever they
want to use it and what-ever they are using as a ‘computer’ at the time. People today
want to use their favourite ‘app’ on their home computer, their phone, their TV, in
their car and on their fancy new touch tablet, and they want it instantly and constantly
up to date. It’s enough to make you cry!

In the best tradition of software developers, whenever we face an emergent system
that requires an impossible amount of resources, we simply change the system. Why
have ten developers working on ten different systems when you can have one
developer working on a single system, and then have a cleverer system translate that
work to the other nine automatically. Sounds great in theory, but the practical
application produces a number of very oddly shaped solutions indeed.

Now what if you could spin the time machine forward a few years and grab one of
the nicer solutions to this problem and then zip back to the present day and start using
it? Well it just so happens that I do have a time machine and did just that. It seems,
The Game Creators Ltd of 2015 ‘will be’ working with a new piece of software called
AGK (App Game Kit) and they ‘will make’ me promise that providing I don’t upset
causality, I can take an early copy back with me to 2011 to help them omega test it.
Call it a moment of weakness, but I might have put this copy of the product on a
website at www.appgamekit.com.

Apparently the break-through with AGK is that you can develop an app on one

xii� Hands On AGK BASIC: Foreword

system, and it will be instantly compatible with every other system on the planet. I’ve
only managed to get it working on Windows, Mac, MeeGo, iOS, Android and Bada
at the moment, but with some more tweaking of their strange alien code I ‘will be’
assured I can get it to produce all the other platforms present on Earth, even the ones
that don’t exist yet.

AGK uses the concept of universal commands. That is, each command will perform
the same functionality no matter which system it happens to be running on. It is also
input agnostic, so if your application requires an input source that does not exist,
AGK will virtualise that input data from another piece of hardware present on the
device or emulate it through virtual controls. The result is that you can write an ‘app’
just once, and the resulting program will run on any device present today and any
device in the future too.

As developers we have a few decades of history under our belt and can swell with
pride on what we have achieved to date. My prediction is that we’ve just created the
world’s largest rod for our backs, and now have to finish what we started. The only
way forward is to evolve ten pairs of hands through a fortuitous genetic mutation, or
find a solution that lets us meet the demands of the next few decades with confidence,
a sense of fun and above all, ten fingers!

Lee Bamber
CEO The Game Creators Ltd
2012

Hands On AGK BASIC: Foreword� xiii

Preface
Welcome to the amazing world of the App Game Kit. This is an application that will
allow you to create a program that you can design on one machine and run on just
about any other platform.

Want to write a game that will run on your phone or your tablet? No problem! Write
the application on your regular computer and transfer it to your other devices - it’s
easy!

Graphics, animation, sound, touch screen, mouse, joystick, keyboard - your app will
cope with them all.

Write your apps and sell them online. Some game apps have sold over 5 million
copies.

And although AGK stands for App Game Kit, there’s no reason why your creation
has to be a game. You can easily write educational material, utilities or any number
of applications.

Who is this book for? It’s for you. It doesn’t matter if you’re a programming guru or
have never written a line of code in your life. This book assumes only a basic
knowledge of computers. If you can run an application, copy, paste, delete data,
access the internet, type (even with just one finger), and know just a little basic
arithmetic then that’s all that assumed. Everything else is here. And for the guru there
are plenty of hints and tips that I’m sure you will find helpful.

Some books can be very hard going: pages and pages of detail - most of which you
forget as soon as you turn to the next page, or when you fall asleep. We do things
differently here. No getting bored reading page after page - you’ll have a series of
activities to carry out that are designed to reinforce what you’ve read on the page.
And unlike most other books that seem to forget about any tasks they have set you,
you’ll find a full set of answers to the activities at the end of each chapter.

Enjoy your journey through this book.

Acknowledgements

I’d like to thank Lee Bamber, Paul Johnston and Mike Johnson from The Game
Creators for all their help and guidance, Also, thanks to John McKay for his patience
and forbearance in testing every example included in the book. As usual, Virginia
Marshall did her best to rid the book of any grammar or spelling problems.

As always, any errors remaining are entirely my own.

I am always happy to receive any helpful suggestions on how to improve the book or
- heaven forbid - details of any errors you’ve found.

Contact me at alistair@digital-skills.co.uk.

Alistair Stewart 	 June 2012

xiv� Hands On AGK BASIC: Foreword

How to Get the Most Out of this Book
Is learning the basics of computer programming difficult? No, but you do have to put
in the effort. Despite other publications promising to have you expert in a day, or a
week, I’m sure you’re smart enough to know that’s not going to happen. So, let’s get
real: you’ll learn how to program using AGK if you put in the work, take your time
to make sure you understand something before moving on, and practice, practice,
practice.

We’ve tried to keep things interesting by giving you plenty of practical work to do as
you journey through this book, but feel free to try out your own projects as well.

The first chapter is the only one in which you won’t need your computer since it
concentrates on the basic concepts behind all computer programming. You can, if
you wish, work on the second chapter at the same time as you read through Chapter
1. That way, you’ll be able to start programming right away.

Take your time with each chapter. Make sure you do each of the activities: they are
there to give you a deeper understanding as well as to keep you actively involved.
Since most activities require you to create a program, the computer will let you know
if you’ve got it right, but you should still take the time to look at the activity’s
solution given at the end of the chapter. The solution given may differ from your own
but it’s always of use to see how others tackle the same problem.

Don’t be afraid to reread a section or a whole chapter - it’s the second or third reading
of something new that finally gets the information across to most people.

If you are already a seasoned programmer you will be able to skip through much of
the early chapters. If you have programmed in DarkBASIC before, many of the core
statements in AGK are identical to that earlier language, but look out for a few subtle
differences such as the lack of READ and DATA statements and the method used to
initialise arrays.

The Files for the Book

Many of the programming activities (particularly in later chapters) make use of other
resources such as images, sounds, and 3D models. You can download the necessary
files from

	 www.digital-skills.co.uk/downloads/AGKDownloads.zip

Hands On AGK BASIC: Algorithms� 1

In this Chapter:

T Understanding Algorithms

T Creating Algorithms

T Control Structures

T Boolean Expressions

T Data Types

T Stepwise Refinement

T The Need for Testing

Algorithms

2� Hands On AGK BASIC: Algorithms

Designing Algorithms

Following Instructions

Congratulations! You’ve just become a human computer. You were given a set of
instructions which you have carried out (by the way, did you think of the colour
grey?).

That’s exactly what a computer does. You give it a set of instructions, the machine
carries out those instructions, and that is ALL a computer does. If some computers
seem to be able to do amazing things, that is only because someone has written an
amazingly clever set of instructions. A set of instructions designed to perform some
specific task (like that in Activity 1.1) is known as an algorithm.

A clear and concise algorithm should have the following characteristics:

±	One instruction per line

±	Each instruction is unambiguous

±	Each instruction is as brief as possible

As you can see, there are at least two ways to solve the problem given in Activity 1.2.
Is one better than the other? Well, if we start by filling container A, the solution needs
less instructions, so that might be a good guideline at this point when choosing which
algorithm is best.

However, the algorithms that a computer carries out are not written in English like

Activity 1.1

Carry out the following set of instructions in your head.	

	 Think of a number between 1 and 10
	 Multiply that number by 9
	 Add up the individual digits of this new number
	 Subtract 5 from this total
	 Think of the letter at that position in the alphabet
	 Think of a country in Europe that starts with that letter
	 Think of a mammal that starts with the second letter of the country’s name
	 Think of the colour of that mammal

A B

Activity 1.2

This time let’s see if you can devise your own algorithm.

The task you need to solve is to measure out exactly 4 litres of water. You
have two containers. Container A, if filled, will hold exactly 5 litres of water,
while container B will hold 3 litres of water. You have an unlimited supply of
water and a drain to get rid of any water you no longer need. It is not possible
to know how much water is in a container if you only partly fill it from the
supply.

If you manage to come up with a solution, see if you can find a second way of
measuring out the 4 litres.

Hands On AGK BASIC: Algorithms� 3

the instructions shown above, but in a more stylised form using a computer
programming language. AGK BASIC is one such language. The set of program
language instructions which make up each algorithm is then known as a computer
program or software.

Just as we may perform a great diversity of tasks by following different sets of
instructions, so the computer can be made to carry out any task for which a program
exists.

Computer programs are normally copied (or loaded) from a disk into the computer’s
memory and then executed (or run). Execution of a program involves the computer
performing each instruction in the program one after the other. This it does at
impressively high rates, possibly exceeding 160,000 million (or 160 billion)
instructions per second (160,000 mips).

Depending on the program being run, the computer may act as a word processor, a
database, a spreadsheet, a game, a musical instrument or one of many other
possibilities. Of course, as a programmer, you are required to design and write
computer programs rather than use them. And, more specifically, our programs in this
text will be mainly multimedia and game oriented, an area of programming for which
AGK has been specifically designed.

Control Structures
Although writing algorithms and programming computers can be complicated tasks,
there are only a few basic concepts and statements which you need to master before
you are ready to start producing software. Luckily, many of these concepts are
already familiar to you in everyday situations. If you examine any algorithm, no
matter how complex, you will find it consists of only three basic structures:

±	Sequence 	 where one instruction follows on from another.

±	Selection 	 where a choice is made between two or more alternative 	
		 actions.

±	Iteration 	 where one or more instructions are carried out over and 	
		 over again.

These structures are explained in detail over the next few pages. All that is needed is
to formalise how they are used within an algorithm. This formalisation better matches
the structure of a computer program.

Sequence
A set of instructions designed to be carried out one after another, beginning at the first
and continuing, without omitting any, until the final instruction is completed, is
known as a sequence. For example, instructions on how to perform an everyday task
such as plant a bush in the garden would be:

Activity 1.3

a) A set of instructions that performs a specific task is known as what?

b) What term is used to describe a set of instructions used by a computer?

c) The speed of a computer is measured in what units?

A traditional disk
makes use of a
magnetic surface to
record information.
More recent designs
use solid state
memory.

4� Hands On AGK BASIC: Algorithms

	 Choose spot for planting	
	 Dig hole
	 Add fertiliser	
	 Place shrub in hole
	 Pack in soil around base of shrub

The set of instructions given earlier in Activity 1.1 is also an example of a sequence.

Selection
Binary Selection

Often a group of instructions in an algorithm should be carried out only when certain
circumstances arise. For example, if we were playing a simple game with a young
child in which we hide a sweet in one hand and allow the child to have the sweet only
if she can guess which hand the sweet is in, then we might explain the core idea with
an instruction such as:

	 Give the sweet to the child if the child guesses which hand the sweet is in

Notice that when we write a sentence containing the word IF, it consists of two main
components:

	 a condition 	: the child guesses which hand the sweet is in
and
	 a command 	 : give the sweet to the child

A condition (also known as a Boolean expression) is a statement that is either true
or false in a given situation. The command given in the statement is only carried out
if the condition is true at that particular moment and hence this type of instruction is
known as an IF statement and the command as a conditional instruction. Although
English would allow us to rewrite the above instruction in many different ways, when
we produce a set of formal instructions, as we are required to do when writing
algorithms, then we use a specific layout as shown in FIG-1.1, always beginning with
the word IF.

Activity 1.4

Re-arrange the following instructions to describe how to play a single shot
during a golf game:
	
	 Swing club forwards, attempting to hit ball
	 Take up correct stance beside ball
	 Grip club correctly
	 Swing club backwards
	 Choose club

 condition

command

IF THEN

ENDIF

If condition
is true...

then command
is carried out

If condition is not true,
then command is ignored

FIG-1.1

The IF Statement

Note that there are two
alternative options in this
structure: to carry out the
command or to ignore it.

Hands On AGK BASIC: Algorithms� 5

Notice that the layout of this instruction makes use of three terms that are always
included. These are the words IF, which marks the beginning of the instruction;
THEN, which separates the condition from the command; and finally, ENDIF which
marks the end of the instruction.

The indentation of the command is important since it helps our eye grasp the structure
of our instructions. Appropriate indentation is particularly valuable in aiding
readability once an algorithm becomes long and complex. Using this layout, the
instruction for our game with the child would be written as:

	 IF the child guesses which hand the sweet is in THEN
		 Give the sweet to the child
	 ENDIF

Sometimes, there will be several commands to be carried out when the condition
specified is met. For example, in the game of Scrabble we might describe a turn as:

	 IF you can make a word THEN
		 Add the word to the board
		 Work out the points gained
		 Add the points to your total
		 Select more letter tiles
	 ENDIF

Of course, the IF statement will almost certainly appear within a longer set of
instructions. For example, the instructions for playing our guessing game with the
young child may be given as:

	 Hide a sweet in one hand
	 Ask the child to guess which hand contains the sweet
	 Wait for the child to reply
	 IF the child guesses which hand the sweet is in THEN
		 Give the sweet to the child
	 ENDIF
	 Ask the child if they would like to play again

This longer list of instructions highlights the usefulness of the term ENDIF in
separating the conditional command, Give the sweet to the child, from subsequent
unconditional instructions, in this case, Ask the child if they would like to play again.

The IF structure is also used in an extended form to offer a choice between two
alternative actions. This expanded form of the IF statement includes another formal
term, ELSE, and a second command. If the condition specified in the IF statement is
true, then the command following the term THEN is executed, otherwise the

Activity 1.5

A simple game involves two players. Player 1 thinks of a number between 1
and 100, then Player 2 makes a single attempt at guessing the number. Player 1
responds to a correct guess by saying Correct. If the guess is incorrect, Player 1
makes no response. The game is then complete and Player 1 states the value of
the number.

Write the set of instructions necessary to play the game. In your solution,
include the statements:	

	 Player 1 says “Correct”
	 Player 1 thinks of a number
	 IF guess matches number THEN

Note that this algorithm
does not explicitly say
what happens when the
child makes an incorrect
guess. This is because no
specific action needs to
be carried out when an
incorrect guess is made.

6� Hands On AGK BASIC: Algorithms

command following ELSE is carried out.

For instance, in our earlier example of playing a guessing game with a child, nothing
happened if the child guessed wrongly. If the person holding the sweet were to eat it
when the child’s guess was incorrect, we could describe this setup with the following
statement:

	 IF the child guesses which hand the sweet is in THEN
		 Give the sweet to the child
	 ELSE
		 Eat sweet yourself
	 ENDIF

The general form of this extended IF statement is shown in FIG-1.2.

Because the IF statement (with or without the ELSE option) always offers two
alternative options, the structure is known as binary selection.

When we have several independent selections to make, then we may use several IF
statements. For example, when playing Monopoly, we may buy any unpurchased
property we land on. In addition, we get another turn if we throw a double. This part
of the game might be described using the following statements:

	 Throw the dice
	 Move your piece forward by the number indicated
	 IF you land on an unsold property THEN
		 Buy the property
	 ENDIF
	 IF you threw doubles THEN
		 Throw the dice again
	 ELSE
		 Hand the dice to the next player
	 ENDIF

 condition

command 1

IF

ENDIF

THEN

ELSE

command 2

If condition
is true...

...then command1
is carried out

If condition
is false...

...then command2
is carried out

Activity 1.6

In the game of Hangman, one player has to guess the letters in a word known
to the second player. At the start of the game, player 2 draws one hyphen for
each letter in the word. When player 1 guesses a letter which is in the word,
player two writes the letter above the appropriate hyphen. When an incorrect
letter is guessed, player 2 draws a body part of a hanging man (there are 6 parts
in the simple drawing).

Write an IF statement containing an ELSE section which describes the
alternative actions to be taken by player 2 when player 1 guesses a letter.

In the solution include the statements:
	 Add letter at appropriate position(s)
	 Add part to hanged man

FIG-1.2

The IF..THEN..ELSE
Structure

Hands On AGK BASIC: Algorithms� 7

Multi-way Selection

Although a simple IF statement can be used to select one of two alternative actions,
sometimes we need to choose between more than two alternatives (known as multi-
way selection). For example, imagine that the rules of the simple guessing game
mentioned in Activity 1.5 are changed so that there are three possible responses to
Player 2’s guess; these being:

±	Correct

±	Too low

±	Too high

One way to create an algorithm that describes this situation is just to employ three
separate IF statements:

	 IF the guess is equal to the number you thought of THEN
		 Say “Correct”
	 ENDIF
	 IF the guess is lower than the number you thought of THEN		
		 Say “Too low”
	 ENDIF
	 IF the guess is higher than the number you thought of THEN		
		 Say “Too high”
	 ENDIF

This will work, but would not be considered a good design for an algorithm since,
when the first IF statement is true, we still go on and check if the conditions in the
second and third IF statements are true. Checking those last two statements would be
a waste of time since, if the first condition is true, the others cannot be and therefore
testing them serves no purpose. Where only one of the conditions being considered
can be true at a given moment in time, these conditions are known as mutually
exclusive conditions. The most effective way to deal with mutually exclusive
conditions is to check for one condition, and only if this is not true, do we bother to
examine the other conditions being tested. So, for example, in our algorithm for
guessing the number, we might begin by writing:

	 IF guess matches number THEN
		 Say “Correct”
	 ELSE
		 Check the other conditions
	 ENDIF

Of course a statement like Check the other conditions is too vague to be much use in an
algorithm (hence the asterisks to emphasise the problem). But what are these other
conditions? They are the guess is lower than the number Player 1 thought of and the guess
is higher than the number Player 1 thought of.

We already know how to handle a situation where there are only two alternatives: use
an IF statement. So selecting between Too low and Too high requires the statement

	 IF guess is less than number THEN
		 Say “Too low”
	 ELSE
		 Say “Too high”
	 ENDIF

Now, by replacing the phrase ***Check the other conditions*** in our original algorithm
with our new IF statement we get:

8� Hands On AGK BASIC: Algorithms

	 IF guess matches number THEN
		 Say “Correct”
	 ELSE
		 IF guess is less than number THEN
 			 Say ”Too low”
		 ELSE
			 Say “Too high”
		 ENDIF
	 ENDIF

Notice that the second IF statement is now totally contained within the ELSE section
of the first IF statement. This situation is known as nested IF statements. Where
there are even more mutually exclusive alternatives, several IF statements may be
nested in this way. However, in most cases, we’re not likely to need more than two
nested IF statements.

As you can see from the solution to Activity 1.7, although nested IF statements get
the job done, the general structure can be rather difficult to follow. A better method
would be to change the format of the IF statement so that several, mutually exclusive,
conditions can be declared in a single IF statement along with the action required for
each of these conditions. This would allow us to rewrite the solution to Activity 1.7
as:

	 IF
		 crossbow is too high:			 Say “Down a bit”
		 crossbow is too low:			 Say “Up a bit”
		 crossbow is too far right:		 Say “Left a bit”
		 crossbow is too far left:			 Say “ Right a bit”
		 crossbow is on target:			 Say “Fire”	
	 ENDIF

Each option is explicitly named (ending with a colon) and only the one which is true
will be carried out, the others will be ignored.

Of course, we are not limited to merely five options; there can be as many as the
situation requires.

When producing a program for a computer, all possibilities have to be taken into
account. Early adventure games, which were text based, allowed the player to type a
command such as Go East, Go West, Go North, Go South and this moved the player’s
character to new positions in the imaginary world of the computer program. If the
player typed in an unrecognised command such as Go North-East or Move faster,
then the game would issue an error message.

Activity 1.7

In an old TV programme called The Golden Shot, contestants had to direct a
crossbow in order to shoot an apple. The player sat at home and directed the
crossbow controller via the phone. Directions were limited to the following
phrases: up a bit, down a bit, left a bit, right a bit, and fire.

Write a set of nested IF statements that determine which of the above
statements should be issued.

Use statements such as:
		 IF the crossbow is pointing too high THEN
	 and		
		 Say “Left a bit”

Hands On AGK BASIC: Algorithms� 9

This setup can be described by adding an ELSE section to the structure as shown
below:

	 IF
		 command is Go East:
			 Move player’s character eastward
		 command is Go West:	
			 Move player’s character westward
		 command is Go North:	
			 Move player’s character northward
		 command is Go South:	
			 Move player’s character southward
	 ELSE
			 Display an error message
	 ENDIF

The additional ELSE option will be chosen only if none of the other options are
applicable. In other words, it acts like a catch-all, handling all the possibilities not
explicitly mentioned in the earlier conditions.

This gives us the final form of this style of the IF statement as shown in FIG-1.3.

FIG-1.3

The Multi-Way IF
Structure

IF

ENDIF

ELSE

...then command1
is carried out

If condition1
is true... condition1 :

command1

 condition2 :
command2

 condition3 :
command3

If condition2
is true...

...then command2
is carried out

as many conditions
and correponding

commands as necessary
can be inserted

...then command3
is carried out

If condition3
is true...

command
If none of the

previous conditions are
true, then this command

is carried out

Activity 1.8

In the TV game Wheel of Fortune (where you have to guess a well-known
phrase), you can, on your turn, either guess a consonant, buy a vowel, or make
a guess at the whole phrase.

If you know the phrase, you should make a guess at what it is; if there are still
many unseen letters, you should guess a consonant; as a last resort you can buy
a vowel.

Write an IF statement in the style given above describing how to choose from
the three options.

10� Hands On AGK BASIC: Algorithms

Complex Conditions

Often the condition given in an IF statement may be a complex one. For example, in
the TV game Family Fortunes, you only win the star prize if you get 200 points and
guess the most popular answers to a series of questions. This can be described in our
more formal style as:

IF at least 200 points gained AND all most popular answers have been guessed
THEN
		 winning team get the star prize
ENDIF

The AND Operator

Note the use of the word AND in the above example. AND (called a Boolean
operator) is one of the terms used to link simple conditions in order to produce a
more complex one (known as a complex condition). The conditions on either side
of the AND are called the operands. Both operands must be true for the overall result
to be true. We can generalise this to describe the AND operator as being used in the
form:

	 condition 1 AND condition 2

The result of the AND operator is determined using the following rules:

1. 	 Determine the truth of condition 1	
2. 	 Determine the truth of condition 2	
3. 	 IF both conditions are true THEN
			 the overall result is true
		 ELSE
 			 the overall result is false
		 ENDIF

For example, if a proximity light comes on when it’s dark and it detects motion then
we can describe the logic of the equipment as:

	 IF it’s dark AND motion has been detected THEN
		 Switch on light
	 ENDIF

Now, if we assume that at a particular moment in time it’s dark but no motion has
been detected then the above statement would be dealt with in the manner shown in
FIG-1.4.

FIG-1.4

The AND Operator

The first condition is tested to
determine if it is true or false. In this
case, that condition is true

The second condition is false (since no
motion has been detected).

it’s dark
The condition

is true motion has been detected

This condition
is false

Hands On AGK BASIC: Algorithms� 11

With two conditions there are four possible combinations of results. The first
possibility is that both conditions are false; another possibility is that condition 1 is
false but condition 2 is true, etc.

All possibilities of the AND operator are summarised in FIG-1.5.

The OR Operator
Simple conditions may also be linked by the Boolean OR operator. Using OR, only
one of the two conditions specified needs to be true in order to carry out the action
that follows. For example, in the game of Monopoly you go to jail if you land on the
Go To Jail square or if you throw three doubles in a row. This can be written as:

	 IF player landed on Go To Jail OR player has thrown 3 pairs in a row THEN
		 Move player to jail
	 ENDIF

Like AND, the OR operator works on two operands:

Activity 1.9

What are the other possible combinations for the two conditions?

Activity 1.10

In Microsoft Windows applications, the program will request the name of the
file to be opened if the Ctrl and O keys are pressed together.

Write the first line of an IF statement, which includes the term AND,
summarising this situation.

 condition 1 condition 2 condition 1 AND condition 2

 false false false
false true false
true false false
true true true

FIG-1.5

The AND Truthtable

Note that the result is
true only when both
conditions are true.

Substituting these results in the
original statement we have...

Since both conditions are not true, we
get an overall result of false, the
command Switch on light is not
executed.

IF true AND false THEN
 Switch on light
ENDIF IF false THEN

 Switch on light
ENDIF ...command not

executed

The compound
condition’s final value

is false so...

FIG-1.4
(continued)

The AND Operator

12� Hands On AGK BASIC: Algorithms

	 condition 1 OR condition 2

When OR is used, only one of the conditions involved needs to be true for the overall
result to be true. Hence the results are determined by the following rules:

1. 	 Determine the truth of condition 1	
2. 	 Determine the truth of condition 2	
3. 	 IF any of the conditions are true THEN
			 the overall result is true
		 ELSE
			 the overall result is false
		 ENDIF

For example, if a player in the game of Monopoly has not landed on the Go To Jail
square, but has thrown three consecutive pairs, then the result of the IF statement
given above would be determined as shown in FIG-1.6.

The results of the OR operator are summarised in FIG-1.7.

The NOT Operator

The final Boolean operator which can be used as part of a condition is NOT. This
operator is used to reverse the meaning of a condition. Hence, if it’s dark is true, then
NOT it’s dark is false. In fact, you can usually get away with just testing for the
opposite condition rather than using NOT. For example, rather than write NOT it’s
dark (which isn’t exactly regular English), you can write it’s light - assuming light
and dark are the only two options. Where there are many options to choose from, then

FIG-1.6

The OR Operator

The first condition is false, but the
second is true.

So the the original condition becomes
false OR true which reduces further to
true and hence the player goes to jail.

player landed on Go to Jail

player thrown 3 pairs in a row

false

true

IF false OR true THEN
 Move player to jail
ENDIF

IF true THEN
 Move player to jail
ENDIF

Command
executed

FIG-1.7

The OR Truthtable

Activity 1.11

In Monopoly, a player can get out of jail if he throws a double or pays a £50
fine. Express this information in an IF statement which makes use of the OR
operator.

 condition 1 condition 2 condition 1 OR condition 2

 false false false
false true true
true false true
true true true

Hands On AGK BASIC: Algorithms� 13

using NOT can make things a lot easier. It’s a whole lot simpler to write something
like

	 NOT day is Monday

than have to write

	 day is Tuesday OR day is Wednesday OR day is Thursday, etc.

Notice that the word NOT is always placed at the start of the condition and not where
it would appear in everyday English (day is NOT Monday). The NOT operator works
on a single operand:

	 NOT condition

When NOT is used, the result given by the original condition (the bit without the
NOT) is reversed. Hence the results are determined by the following rules:

1. Determine the truth of the original condition	
2. Complement the result obtained in step 1

For example, if we test for it not being Monday on a Friday, then the result of the IF
statement given above would be determined as shown in FIG-1.8.

The results of the NOT operator are summarised in FIG-1.9.

 day is Monday IF THENNOT

 false IF THENNOT

 true IF THEN

Assuming it’s
Friday, then ...

this condition ...

is false ...

and NOT false
gives true

FIG-1.8

The NOT Operator

 condition NOT condition

 false true
true false

FIG-1.9

The NOT Truthtable

Activity 1.12

a)	 Name the three types of control structures.
b) 	 Another term for condition is what?
c) 	 Name the two types of selection.
d) 	 What does the term mutually exclusive conditions mean?
e) 	 Give an example of a Boolean operator.
f)	 What is a conditional statement?
g) 	 If two conditions are linked using the term AND, how many of the 		
	 conditions must be true before the conditional statement is executed?

14� Hands On AGK BASIC: Algorithms

Iteration
There are certain circumstances where it is necessary to perform the same sequence
of instructions several times. For example, let’s assume that a game involves throwing
a dice three times and adding up the total of the values thrown. We could write
instructions for such a game as follows:

	 Set the total to zero
	 Throw dice
	 Add dice value to total
	 Throw dice
	 Add dice value to total
	 Throw dice
	 Add dice value to total
	 Call out the value of total

You can see from the above that two instructions,

	 Throw dice
	 Add dice value to total

are carried out three times, once for each turn taken by the player. Not only does it
seem rather time-consuming to have to write the same pair of instructions three
times, but it would be even worse if the player had to throw the dice 10 times!

What is required is a way of showing that a section of the instructions is to be repeated
a fixed number of times. Carrying out one or more statements over and over again is
known as looping or iteration. The statement or statements we want to perform over
and over again are known as the loop body.

FOR..ENDFOR

When writing a formal algorithm in which we wish to repeat a set of statements a
specific number of times, we use a FOR..ENDFOR structure. There are two parts to
this statement. The first of these is placed just before the loop body and in it we state
how often we want the statements in the loop body to be carried out. For the dice
problem our statement would be:

	 FOR 3 times DO

Generalising, we can say this statement takes the form

	 FOR value times DO

where value would be some positive number.

Next come the statements that make up the loop body. These are indented:

	 FOR 3 times DO
		 Throw dice
		 Add dice value to total

Finally, to mark the fact that we have reached the end of the loop body statements,

The term dice is
used for both singular
and plural forms.

Activity 1.13

What statements make up the loop body in our dice problem given above?

Hands On AGK BASIC: Algorithms� 15

we add the word ENDFOR:

	 FOR 3 times DO
 		 Throw dice
 	 Add dice value to total
	 ENDFOR

Now we can rewrite our original algorithm as:

	 Set the total to zero
	 FOR 3 times DO
		 Throw dice
		 Add dice value to total
	 ENDFOR
	 Call out the value of total

The instructions between the terms FOR and ENDFOR are now carried out three
times.

We are free to place any statements we wish within the loop body. For example, the
last version of our number guessing game produced the following algorithm:

	 Player 1 thinks of a number between 1 and 100
	 Player 2 makes an attempt at guessing the number
	 IF guess matches number THEN
		 Player 1 says “Correct”
	 ELSE
		 IF guess is less than number THEN
			 Player 1 says “Too low”
		 ELSE
			 Player 1 says “Too high”
		 ENDIF
	 ENDIF

Player 2 would have more chance of winning if he were allowed several chances at
guessing Player 1’s number. To allow several attempts at guessing the number, some
of the statements given above would have to be repeated.

To allow for 7 attempts our new algorithm becomes:

	 Player 1 thinks of a number between 1 and 100
	 FOR 7 times DO
		 Player 2 makes an attempt at guessing the number
		 IF guess matches number THEN
			 Player 1 says “Correct”
		 ELSE
			 IF guess is less than number THEN
				 Player 1 says “Too low”
			 ELSE
				 Player 1 says “Too high”

Note that ENDFOR
is left-aligned with
the opening FOR
statement.

Activity 1.14

If the player was required to throw the dice 10 times rather than 3, what
changes would we need to make to the algorithm?

If the player was required to call out the average of these 10 numbers, rather
than the total, show what other changes are required to the set of instructions.

You can find the
average of the 10
numbers by dividing
the final total by 10.

Activity 1.15

What statements in the algorithm above need to be repeated?

16� Hands On AGK BASIC: Algorithms

			 ENDIF
		 ENDIF
	 ENDFOR

Occasionally, we may have to use a slightly different version of the FOR loop.
Imagine we are trying to write an algorithm explaining how to decide who goes first
in a game. In this game every player throws a dice and the player who throws the
highest value goes first. To describe this activity, we know that each player does the
following task:

	 Player throws dice

But since we can’t know in advance how many players there will be, we write the
algorithm using the statement

	 FOR every player DO

to give the following algorithm

	 FOR every player DO
		 Throw dice
	 ENDFOR
	 Player with highest throw goes first

If we had to save the details of a game of chess with the intention of going back to
the game later, we might write:

FOR each piece on the board DO
		 Write down the name and position of the piece
ENDFOR

Activity 1.17

During a lottery draw, two actions are performed exactly 6 times. These are:
	 Pick out ball	
	 Call out number on the ball

Add a FOR loop to the above statements to create an algorithm for the lottery
draw process.

Activity 1.16

Can you see a flaw in the algorithm?

If not, try playing the game a few times, playing exactly according to the
instructions in the algorithm but with numbers in the range 1 to 10.

Activity 1.18

A game uses cards with images of warriors. At one point in the game the player
has to remove from his hand every card with an image of a knight. To do this
the player must look through every card and, if it is a knight, remove the card.

Write down a set of instructions which performs the task described above. Your
solution should include the statements

	 FOR every card in player’s hand DO and IF card is a knight THEN

Hands On AGK BASIC: Algorithms� 17

The general form of the FOR statement is shown in FIG-1.10.

Although the FOR loop allows us to perform a set of statements a specific number of
times, this statement is not always suitable for the problem we are trying to solve.

For example, in the guessing game of Activity 1.16 we stated that the loop body was
to be performed 7 times, but what if player 2 guesses the number after only three
attempts? If we were to follow the algorithm exactly (as a computer would), then we
must make four more guesses at the number even after we know the correct answer!

To solve this problem, we need another way of expressing looping which does not
commit us to a specific number of iterations.

REPEAT.. UNTIL

The REPEAT .. UNTIL statement allows us to specify that a set of statements should
be repeated until some condition becomes true, at which point iteration should cease.

The word REPEAT is placed at the start of the loop body and, at its end, we add the
UNTIL statement. The UNTIL statement also contains a condition, which, when true,
causes iteration to stop. This is known as the terminating (or exit) condition. For
example, we could use the REPEAT.. UNTIL structure rather than the FOR loop in
our guessing game algorithm. The new version would then be:

	 Player 1 thinks of a number between 1 and 100
	 REPEAT
		 Player 2 makes an attempt at guessing the number
		 IF guess matches number THEN
			 Player 1 says “Correct”
		 ELSE
			 IF guess is less than number THEN
				 Player 1 says “Too low”
			 ELSE
				 Player 1 says “Too high”
			 ENDIF
		 ENDIF
	 UNTIL player 2 guesses correctly

We could also use the REPEAT..UNTIL loop to describe how a slot machine (one-
armed bandit) is played:

	 REPEAT
		 Put coin in machine
		 Pull handle
		 IF you win THEN
			 Collect winnings
		 ENDIF
	 UNTIL you want to stop

FOR expression DO

 loop body

ENDFOR

speci�es the
number of times
loop body is to

be executed

the commands
to be carried

out

The end of
the FOR loop

typical
expressions:

5 times
every item

FIG-1.10

The FOR..ENDFOR
Loop

18� Hands On AGK BASIC: Algorithms

The general form of this structure is shown in FIG-1.11.

The terminating condition may use the Boolean operators AND, OR and NOT as well
as parentheses, where necessary.

Returning to the number guessing game on the previous page, there is still a problem.
By using a REPEAT .. UNTIL loop we are allowing player 2 to have as many guesses
as needed to determine the correct number. That doesn’t lead to a very interesting
game. Later we’ll discover how we might solve this problem.

WHILE.. ENDWHILE

A final method of iteration, differing only subtly from the REPEAT.. UNTIL loop, is
the WHILE .. ENDWHILE structure which has an entry condition at the start of the
loop. The following example illustrates the usefulness of this new structure.

The aim of the card game of Blackjack is to attempt to make the value of your cards
add up to 21 without going over that value. Each player is dealt two cards initially
but can repeatedly ask for another card by saying “hit”. One player is designated the
dealer. The dealer must twist while his cards have a total value of less than 17. So we
might write the rules for the dealer as:

	 Calculate the sum of the initial two cards
	 REPEAT
		 Take another card
		 Add new card’s value to sum
	 UNTIL sum is greater than or equal to 17

But there’s a problem with the solution: if the sum of the first two cards is already 16
or above, we still need to take a third card (just work through the logic, if you can’t
see why). By using the WHILE..ENDWHILE structure we could describe the logic
as

	 Calculate sum of the initial two cards
	 WHILE sum is less than 17 DO
		 Take another card

FIG-1.11

The REPEAT..UNTIL
Loop REPEAT

 loop body

UNTIL condition

Start of
loop

Looping
continues until

condition is
true

Activity 1.19

Confronted with a pile of unordered books when looking for a specific
publication, the only way to find the desired title is to examine each book in
turn until the required one is found. Of course, there’s a possibility that the
book is not in the pile.

Using REPEAT..UNTIL, write the logic required to search for the book.

Hands On AGK BASIC: Algorithms� 19

		 Add new card’s value to sum
	 ENDWHILE

Now determining if the sum is less than 17 is performed before the Take another card
instruction. If the dealer’s two cards already add up to 17 or more, then the Take
another card instruction will be ignored.

The general form of the WHILE.. ENDWHILE statement is shown in FIG-1.12.

In what way does this differ from the REPEAT statement? There are two differences:

±	The condition is given at the beginning of the loop.

±	Looping stops when the condition is false.

The main consequence of this is that it is possible to bypass the loop body of a
WHILE structure entirely without ever carrying out any of the instructions it contains.

On the other hand, the loop body of a REPEAT structure will always be executed at
least once.

WHILE condition

 loop body

ENDWHILE

Start of
loop

Looping
continues while

condition is
true

FIG-1.12

The WHILE..
ENDWHILE Loop

Activity 1.20

A game involves throwing two dice. If the two values thrown are not the same,
then the dice showing the lower value must be rolled again. This process is
continued until both dice show the same value. Write a set of instructions to
perform this game. Your solution should contain the statements

		 Roll both dice
and		 Choose dice with lower value

Activity 1.21

a) 	 What is the meaning of the term iteration?
b) 	 Name the three types of looping structures.
c) 	 What type of loop structure should be used when looping needs to
	 occur an exact number of times?
d)	 What type of loop structure can bypass its loop body without ever
	 executing it?
e) 	 What type of loop contains an exit condition?

20� Hands On AGK BASIC: Algorithms

Infinite Loops

If a loop can never exit, it is known as an infinite loop. As a general rule, infinite
loops are caused by some error in the logic. For example, the algorithm

	 Think of a number
	 REPEAT
		 Subtract 1 from the number
	 UNTIL the number is zero

will never be completed if the number you start with is already zero or less.

Data
We know we need to retain information. Look at your phone; packed with names,
email addresses, phone numbers, and much more. Even when playing an old-
fashioned board game we need to remember things such as the number you threw on
the dice, where your piece is on the board and so on. These examples introduce the
need to process facts and figures (known as data).

Every item of data has two basic characteristics :

			 a name
	 and 	 a value

The name of a data item is a description of the type of information it represents.
Hence on a form we might see boxes labelled as Forename, Surname, Address,
Phone No, etc. These are the data names. And, when we’ve completed the form, the
boxes will contain the values we have entered. These entries are the data values. In
programming, a data item is often referred to as a variable. This term arises from the
fact that, although the name assigned to a data item cannot change, its value may
vary. For example, the value assigned to a variable called salary may rise (or fall)
over weeks, months or years.

Types of Data

Most computer programming languages need to be told what type of value is to be
held in a variable - for example, it needs to know if a variable will hold a number or
a message. Once the variable is set up for one type of value, it can’t be used to hold
any other type. Three of the basic data types recognised by a language such as AGK
BASIC are:

	 integer		 holds whole numbers only (eg -12, 0, 92).

	 real			 (also known as a floating point number or simply float)
				 holds numbers containing fractions (-14.6, 0.005, 176.0).
				 Notice that the fraction part may be .0

	 string			 holds zero or more characters. A charcater may be 	
				 alphabetic, numeric, or punctuation marks (A, 7, *).

Other data types are possible, but we’ll look at these in a later chapter.

Operations on Data

There are four basic operations that a computer can do with data. These are:

Hands On AGK BASIC: Algorithms� 21

Input

This involves being given a value for a data item. For example, in our number-
guessing game, the player who has thought of the original number is given the value
of the guess from the second player. When playing Noughts and Crosses, adding an
X (or O) changes the setup on the board. When using a computer, any value entered
at the keyboard, or any movement or action dictated by a mouse or joystick would be
considered as data entry. This type of action is known as an input operation.

Calculation

Most games involve some basic arithmetic. In Monopoly, the banker has to work out
how much change to give a player buying a property. If a character in an adventure
game is hit, points must be deducted from his strength value. This type of instruction
is referred to as a calculation operation.

Comparison

Often values have to be compared. For example, we need to compare the two numbers
in our guessing game to find out if they are the same. This is known as a comparison
operation.

Output

The final requirement is to communicate with others to give the result of some
calculation or comparison. For example, in the guessing game, player 1 communicates
with player 2 by saying either that the guess is Correct, Too high or Too low.

In a computer environment, the equivalent operation would normally involve
displaying information on a screen or printing it on paper. For instance, in a racing
game your speed and time will be displayed on the screen. This is called an output
operation.

When describing a calculation, it is common to use arithmetic operator symbols
rather than English. Hence, instead of writing the word subtract we use the minus
sign (-). However, programming languages use a slightly different set of symbols
than standard mathematics (see FIG-1.13).

Similarly, when we need to compare values, rather than use terms such as is less than,
we use the less than symbol (<). A summary of these relational operators is given in
FIG-1.14.

As well as replacing the words used for arithmetic calculations and comparisons with

 English Symbol

Multiply *
Divide /
Add +
Subtract -

FIG-1.13

The Arithmetic
Operators

FIG-1.14

The Relational
Operators

 English Symbol

is less than <
is less than or equal to <=
is greater than >
is greater than or equal to >=
is equal to =
is not equal to <>

22� Hands On AGK BASIC: Algorithms

symbols, the term calculate or set is often replaced by the shorter but more cryptic
symbol -> between the variable being assigned a value and the value itself. Using
this abbreviated form, the instruction:

	 Calculate time to complete course as distance divided by speed

becomes

	time -> distance / speed

Although the long-winded English form is more readable, this more cryptic style is
briefer and is much closer to the code used when programming a computer.

Below we compare the two methods of describing our guessing game; first in English:

	 Player 1 thinks of a number between 1 and 100
	 REPEAT
		 Player 2 makes an attempt at guessing the number
		 IF guess matches number THEN
			 Player 1 says “Correct”
		 ELSE
			 IF guess is less than number THEN
				 Player 1 says ”Too low”

			 ELSE
				 Player 1 says “Too high”
			 ENDIF
		 ENDIF
	 UNTIL player 2 guesses correctly

 Using some of the symbols described earlier, we can rewrite this as:

	 Player 1 thinks of a number between 1 and 100
	 REPEAT
		 Player 2 makes an attempt at guessing the number
		 IF guess = number THEN
			 Player 1 says “Correct”
		 ELSE
			 IF guess < number THEN
				 Player 1 says ”Too low”
			 ELSE
				 Player 1 says “Too high”
			 ENDIF
		 ENDIF
	 UNTIL guess = number

Levels of Detail
When we start to write an algorithm in English, one of the things we need to consider
is exactly how much detail should be included. For example, we might describe how
to set up a digital camcorder ready for future recordings as:

	 Insert memory stick
	 Choose appropriate recording settings

Activity 1.22

a)	 What are the two main characteristics of any data item?
b) 	 When data is input, from where is its value obtained?
c) 	 Give an example of a relational operator.

Hands On AGK BASIC: Algorithms� 23

However, this lacks enough detail for anyone unfamiliar with the operation of the
machine. Therefore, we could replace the first statement with:

	 Open the flap covering the memory chip slot
	 IF there is a chip already in the slot THEN
		 Remove it
	 ENDIF
	 Place the new memory stick in slot
	 Close flap

and the second statement could be substituted by:

	 Set recording quality
	 Set exposure to automatic
	 Set focus to automatic

This approach of starting with a less detailed sequence of instructions and then,
where necessary, replacing each of these with more detailed instructions can be used
to good effect when tackling long and complex problems. By using this technique,
we are defining the original problem as an equivalent sequence of simpler problems
before going on to create a set of instructions to handle each of these simpler
problems. This divide-and-conquer strategy is known as stepwise refinement. The
following is a fully worked example of this technique:

Problem:	
	 Describe the traditional way of making a cup of British tea.

Outline Solution:

	 1. Fill kettle	
	 2. Boil water
	 3. Put tea bag in teapot
	 4. Add boiling water to teapot
	 5. Wait 1 minute
	 6. Pour tea into cup
	 7. Add milk and sugar to taste

This is termed a LEVEL 1 solution.

As a guideline, we should aim for a LEVEL 1 solution with between 5 and 12
instructions. Notice that each instruction has been numbered. This is merely to help
with identification during the stepwise refinement process.

Before going any further, we must assure ourselves that this is a correct and full
(though not detailed) description of all the steps required to tackle the original
problem. If we are not happy with the solution, then changes must be made before
going any further.

Next, we examine each statement in turn and determine if it should be described in
more detail. Where this is necessary, rewrite the statement to be dealt with, and below
it, give the more detailed version. For example. Fill kettle would be expanded thus:

	 1. Fill kettle
		 1.1 Remove kettle lid
		 1.2 Put kettle under tap
		 1.3 Turn on tap
		 1.4 When kettle is full, turn off tap
		 1.5 Replace lid on kettle

The numbering of the new statement reflects that they are the detailed instructions

24� Hands On AGK BASIC: Algorithms

pertaining to statement 1. Also note that the number system is not a decimal fraction,
so if there were to be many more statements they would be numbered 1.6, 1.7, 1.8,
1.9, 1.10, 1.11, etc.

It is important that these sets of more detailed instructions describe how to perform
only the original task being examined - they must achieve no more and no less.
Sometimes the detailed instructions will contain control structures such as IFs,
WHILEs or FORs. Where this is the case, the whole structure must be included in the
detailed instructions for that task. Having satisfied ourselves that the breakdown is
correct, we proceed to the next statement from the original solution.

	 2. Boil water
		 2.1 Plug in kettle
		 2.2 Switch on power at socket
		 2.3 Switch on power at kettle
		 2.4 When water boils switch off kettle

The next two statements expand as follows:

	 3. Put tea bag in teapot
		 3.1 Remove lid from teapot
		 3.2 Add tea bag to teapot
	 4. Add boiling water to teapot
		 4.1 Take kettle over to teapot
		 4.2 Add required quantity of water from kettle to teapot

But not every statement from a level 1 solution needs to be expanded. In our case
there is no more detail to add to the statement

	 5. Wait 1 minute

and therefore, we leave it unchanged.

The last two statements expand as follows:

	 6. Pour tea into cup
		 6.1 Take teapot over to cup
		 6.2 Pour required quantity of tea from teapot into cup

	 7. Add milk and sugar as required
		 7.1 IF milk is required THEN
		 7.2 		 Add milk
		 7.3 ENDIF
		 7.4 IF sugar is required THEN
		 7.5 		 Add sugar
		 7.6 	 Stir tea
		 7.7 ENDIF

Notice that this last expansion (step 7) has introduced IF statements. Control
structures (i.e. IF, WHILE, FOR, etc.) can be introduced at any point in an algorithm.

Finally, we can describe the solution to the original problem in more detail by
substituting the statements in our LEVEL 1 solution by their more detailed equivalent:

	 1.1 Remove kettle lid
	 1.2 Put kettle under tap
	 1.3 Turn on tap
	 1.4 When kettle is full, turn off tap
	 1.5 Place lid back on kettle
	 2.1 Plug in kettle
	 2.2 Switch on power at socket
	 2.3 Switch on power at kettle

Hands On AGK BASIC: Algorithms� 25

	 2.4 When water boils switch off kettle
	 3.1 Remove lid from teapot
	 3.2 Add tea bag to teapot
	 4.1 Take kettle over to teapot
	 4.2 Add required quantity of water from kettle to teapot
	 5. Wait 1 minute
	 6.1 Take teapot over to cup
	 6.2 Pour required quantity of tea from teapot into cup
	 7.1 IF milk is required THEN
	 7.2 		 Add milk
	 7.3 ENDIF
	 7.4 IF sugar is required THEN
	 7.5 	 Add sugar
	 7.6 		 Stir tea
	 7.7 ENDIF

This is a LEVEL 2 solution. Note that a level 2 solution includes any LEVEL 1
statements which were not given more detail (in this case, Wait 1 minute).

For some more complex problems it may be necessary to repeat this process to more
levels before sufficient detail is achieved. That is, statements in LEVEL 2 may be
given more detail in a LEVEL 3 breakdown.

Activity 1.23

The game of battleships involves two players. Each player draws two 10 by 10
grids. Each of these have columns lettered A to J and rows numbered 1 to 10.
In the first grid each player marks the position of warships. Ships are added as
follows:

	 1 aircraft carrier	 4 squares
	 2 destroyers 		 3 squares each
	 3 cruisers 		 2 squares each
	 4 submarines 		 1 square each

The squares of each ship must be adjacent and must be vertical or horizontal.
The first player now calls out a grid reference.

The second player responds to the call by saying HIT or MISS. HIT is called if
the grid reference corresponds to a position of a ship. The first player then
marks this result on his second grid using an O to signify a miss and X for a
hit (see diagram below).

						 continued on next page

A B C D E F G H I J A B C D E F G H I J

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

A A A A

C C

C C

S

D

D

D

C

C

S

S

S

O

O

X X X

O

D D D

Vessels are positioned
in the left-hand grid

Results of guesses are
placed in the right-hand grid

26� Hands On AGK BASIC: Algorithms

Checking for Errors
Once we’ve created our algorithm we would like to make sure it is correct.
Unfortunately, there is no foolproof way to do this! But we can at least try to find any
errors or omissions in the set of instructions we have created.

We do this by going back to the original description of the task our algorithm is
attempting to solve. For example, let’s assume we want to check our number guessing
game algorithm. In the last version of the game we allowed the second player to make

Activity 1.23 (continued)

If the first player achieves a HIT then he continues to call grid references until
MISS is called. In response to a HIT or MISS call the first player marks the
second grid at the reference called: 0 for a MISS, X for a HIT.

When the second player responds with MISS, the first player’s turn is over and
the second player has his turn.

The first player to eliminate all segments of the opponent’s ships is the winner.
However, each player must have an equal number of turns, and if both sets of
ships are eliminated in the same round the game is a draw.

The algorithm describing the task of one player is given in the instructions
below. Create a LEVEL 1 algorithm by assembling the lines in the correct order,
adding line numbers to the finished description.
	 Add ships to left grid
	 UNTIL there is a winner
	 Call grid position(s)
	 REPEAT
	 Respond to other player’s call(s)
	 Draw grids
			 					
To create a LEVEL 2 algorithm, some of the above lines will have to be
expanded to give more detail. More detailed instructions are given below for the
statements Call grid position(s) and Respond to other player’s call(s).

By reordering and numbering the lines below create LEVEL 2 details for these
two statements.

	 UNTIL other player misses
	 Mark position in second grid with X
	 Get other player’s call
	 Get reply
	 Get reply
	 ENDIF
	 Call HIT
	 Call MISS
	 Mark position in second grid with 0
	 WHILE reply is HIT DO
	 Call grid reference
	 Call grid reference
	 IF other player’s call matches position of ship THEN
	 ENDWHILE
	 REPEAT
	 ELSE

Hands On AGK BASIC: Algorithms� 27

as many guesses as required until he came up with the correct answer. The first player
responded to each guess by saying either “Too low”, “Too high” or “Correct”.

To check our algorithm for errors we must come up with typical values that might be
used when carrying out the set of instructions and those values should be chosen so
that each possible result is achieved at least once.

So, as well as making up values, we need to predict what response our algorithm
should give to each value used. Hence, if the first player thinks of the value 42 and
the second player guesses 75, then the first player will respond to the guess by saying
“Too high”.

Our set of test values must evoke each of the possible results from our algorithm. One
possible set of values and the responses are shown in FIG-1.15.

Once we’ve created test data, we need to work our way through the algorithm using
that test data and checking that we get the expected results. The algorithm for the
number game is shown below, this time with instruction numbers added.

1. Player 1 thinks of a number between 1 and 100
2. REPEAT
3. 	 Player 2 makes an attempt at guessing the number
4. 	 IF guess = number THEN
5. 		 Player 1 says “Correct”
6. 	 ELSE
7. 		 IF guess < number THEN
8. 			 Player 1 says “Too low”
9. 		 ELSE
10. 		 Player 1 says “Too high”
11. 		 ENDIF
14. 	 ENDIF
14. UNTIL guess = number

Next we create a new table (called a trace table) with the headings as shown in FIG-
1.16.

Now we work our way through the statements in the algorithm filling in a line of the
trace table for each instruction.

Instruction 1 is for player 1 to think of a number. Using our test data, that number will

 Test Data Expected Results

number = 42
guess = 75 Says “Too high”
guess = 15 Says “Too low”
guess = 42 Says “Correct”

FIG-1.15

Test Data for the
Number Guessing Game
Algorithm

 Instruction Condition T/F Variables Output
number guess

Contains the number
of the instruction which

has been executed

Any condition contained in
the statement is written here

The result of the
condition is written

here as T or F

The value currently
stored in each variable

is given here
Any value displayed

(or spoken) is shown here

FIG-1.16

A Trace Table

28� Hands On AGK BASIC: Algorithms

be 42, so our trace table starts with the line shown in FIG-1.17.

The REPEAT word comes next. Although this does not cause any changes,
nevertheless a 2 should be entered in the next line of our trace table. Instruction 3
involves player 2 making a guess at the number (this guess will be 75 according to
our test data). After 3 instructions our trace table is as shown in FIG-1.18.

Instruction 4 is an IF statement containing a condition. This condition and its result
are written into columns 2 and 3 as shown in FIG-1.19.

Because the condition is false, we now jump to instruction 6 (the ELSE line) and on
to 7. This is another IF statement and our table now becomes that shown in FIG-1.20.

Since this second IF statement is also false, we move on to statements 9 and 10.
Instruction 10 causes output (speech) and hence we enter this in the final column as
shown in FIG-1.21.

Now we move on to statements 11,12 and 13 as shown in FIG-1.22.

Since statement 13 contains a condition which is false, we return to statement 2 and

FIG-1.17

Working through a
Trace 1

 Instruction Condition T/F Variables Output

1 42

number guess

 Instruction Condition T/F Variables Output

1 42
2
3 75

number guessFIG-1.18

Working through a
Trace 2

 Instruction Condition T/F Variables Output

1 42
2
3 75
4

number guess

guess = number F

FIG-1.19

Working through a
Trace 3

 Instruction Condition T/F Variables Output

1 42
2
3 75
4 F
6
7 F

number guess

guess = number

 guess < number

FIG-1.20

Working through a
Trace 4

 Instruction Condition T/F Variables Output

1 42
2
3 75
4 F
6
7 F
9
10 Too high

number guess

guess = number

 guess < number

FIG-1.21

Working through a
Trace 5

Hands On AGK BASIC: Algorithms� 29

then onto 3 where we enter 15 as our second guess (see FIG-1.23).

This method of checking is known as desk checking or dry running.

Summary
±	Computers can perform many tasks by executing different programs.

±	An algorithm is a sequence of instructions which solves a specific problem.

±	A program is a list of computer instructions which usually manipulates data
and produces results.

±	Three control structures are used in programs :

		 Sequence

		 Selection

		 Iteration

±	A sequence is a list of instructions which are performed one after the other.

 Instruction Condition T/F Variables Output

1 42
2
3 75
4 F
6
7 F
9
10 Too high
11
12
13 F
2
3 15

number guess

guess = number

 guess < number

guess = number

FIG-1.23

Working through a
Trace 7

Activity 1.24

Create your own trace table for the number-guessing game and, using the same
test data as given in FIG-1.15 complete the testing of the algorithm.

Were the expected results obtained?

 Instruction Condition T/F Variables Output

1 42
2
3 75
4 F
6
7 F
9
10 Too high
11
12
13 F

number guess

guess = number

 guess < number

guess = number

FIG-1.22

Working through a
Trace 6

30� Hands On AGK BASIC: Algorithms

±	Selection involves choosing between two or more alternative actions.

±	Selection is performed using the IF statement.

±	There are three forms of IF statement:

		 IF condition THEN
			 instructions
		 ENDIF

		 IF condition THEN
			 instructions
		 ELSE
			 instructions
		 ENDIF

		 IF
			 condition 1:
				 instructions
			 condition 2:
				 instructions
				 .
				 .
			 condition n :
				 instructions
			 ELSE
				 instructions
		 ENDIF

±	Iteration is the repeated execution of one or more statements.

±	Iteration is performed using one of three instructions:

		 FOR number of iterations required DO
			 instructions
		 ENDFOR

		 REPEAT
			 instructions
		 UNTIL condition

		 WHILE condition DO
			 instructions
		 ENDWHILE

±	A condition is an expression which is either true or false.

±	Simple conditions can be linked using AND or OR to produce a complex
condition.

±	The meaning of a condition can be reversed by adding the word NOT.

±	Data items (or variables) hold the information used by the algorithm.

±Data item values may be:

				 Input
				 Calculated
				 Compared
		 or		 Output

±	Calculations can be performed using the following arithmetic operators:

			 Multiplication 		 *
			 Addition 			 +

Hands On AGK BASIC: Algorithms� 31

			 Division 			 /
			 Subtraction		 	 -

±	Comparisons can be performed using the relational operators:

			 Less than 				 <
			 Less than or equal to 		 <=
			 Greater than 				 >
			 Greater than or equal to 	 >=
			 Equal to 				 =
			 Not equal to 				 <>

±	The symbol -> is used to assign a value to a data item when writing in a more
program-like style. Read this symbol as is assigned the value.

±	In programming, a data item is referred to as a variable.

±	The divide-and-conquer strategy of stepwise refinement can be used when
creating an algorithm.

±	LEVEL 1 solution gives an overview of the sub-tasks involved in carrying out
the required operation.

±	LEVEL 2 gives a more detailed solution by taking each sub-task from LEVEL
1 and, where necessary, giving a more detailed list of instructions required to
perform that sub-task.

±	Not every statement needs to be broken down into more detail.

±	Further levels of detail may be necessary when using stepwise refinement for
complex problems.

±	An algorithm can be checked for errors or omissions using a trace table.

32� Hands On AGK BASIC: Algorithms

Solutions
Activity 1.1

No solution required.

Activity 1.2
One possible solution is:

Fill A							 A = 5 litres 	B = 0 litres
Fill B from A				 A = 2				 B = 3
Empty B							 A = 2				 B = 0
Empty A into B				 A = 0				 B = 2
Fill A							 A = 5				 B = 2
Fill B from A				 A = 4				 B = 3

A second solution is:
Fill B							 A = 0				 B = 3
Pour B into A				 A = 3				 B = 0
Fill B							 A = 3				 B = 3
Fill A from B				 A = 5				 B = 1
Empty A							 A = 0				 B = 1
Pour B into A				 A = 1				 B = 0
Fill B							 A = 1				 B = 3
Pour B into A				 A = 4				 B = 0

Activity 1.3
a) An algorithm
b) A computer program
c) mips (millions of instructions per second)

Activity 1.4
Choose club
Take up correct stance beside ball
Grip club correctly
Swing club backwards
Swing club forwards, attempting to hit ball

The second and third statements could be interchanged.

Activity 1.5
Player 1 thinks of a number
Player 2 makes a guess at the number
IF guess matches number THEN
	 Player 1 says “Correct”
ENDIF
Player 1 states the value of the number

Activity 1.6
IF letter appears in word THEN
	 Add letter at appropriate position(s)
ELSE
	 Add part to hanged man
ENDIF

Activity 1.7
IF the crossbow is on target THEN
	 Say “Fire”
ELSE
	 IF the crossbow is pointing too high THEN
 		 Say “Down a bit”
	 ELSE
		 IF the crossbow is pointing too low THEN				
			 Say “Up a bit”
 		 ELSE
			 IF the crossbow is too far left THEN
 		 Say “Right a bit”
			 ELSE
				 Say “Left a bit”
			 ENDIF
		 ENDIF
	 ENDIF
ENDIF

Activity 1.8
IF	
	 you know the phrase:
		 Make guess at phrase
	 there are many unseen letters:
 		 Guess a consonant
ELSE
		 Buy a vowel
ENDIF

Activity 1.9
Other possibilities are:

Both conditions are true
condition 1 is true and condition 2 is false

Activity 1.10
IF Ctrl key pressed AND O key pressed THEN
	 Request filename
ENDIF

Activity 1.11
IF double thrown OR fine paid THEN	
	 Player gets out of jail
ENDIF

 Activity 1.12
 a)	 Sequence
	 Selection
	 Iteration
b)	 Boolean expression
c)	 Binary selection	 Multi-way selection
d) 	 No more than one of the conditions can be true at any 	
	 given time.
e)	 Boolean operators are: AND, OR, and NOT.
f) 	 A conditional statement is a statement which is 		
	 executed only if a given set of conditions are met.
g)	 Both conditions must be true.

Activity 1.13
Throw dice
Add dice value to total

 Activity 1.14
Only one line, the FOR statement, would need to be changed,
the new version being:

	 FOR 10 times DO

To call out the average, the algorithm would change to

Set the total to zero
FOR 10 times DO
	 Throw dice
	 Add dice value to total
ENDFOR
Calculate average as total divided by 10
Call out the value of average

Activity 1.15
In fact, only the first line of our algorithm is not repeated, so
the lines that need to be repeated are:

Player 2 makes an attempt at guessing the number
IF guess matches number THEN
		 Player 1 says “Correct”
 ELSE
 	 IF guess is less than number THEN
 		 Player 1 says “Too low”
 	 ELSE
		 Player 1 says “Too high”

Hands On AGK BASIC: Algorithms� 33

	 ENDIF
ENDIF

Activity 1.16
The FOR loop forces the loop body to be executed exactly 7
times. If the player guesses the number in less attempts, the
algorithm will nevertheless continue to ask for the remainder
of the 7 guesses.

Later, we’ll see how to solve this problem.

Activity 1.17
FOR 6 times DO
 	 Pick out ball
	 Call out number on the ball
ENDFOR

Activity 1.18
FOR every card in player’s hand DO
	 IF card is a knight THEN
		 Remove card from hand
	 ENDIF
ENDFOR

Activity 1.19
REPEAT
	 Read next book title
UNTIL required title found OR no books remaining

Activity 1.20
Roll both dice
WHILE dice values don’t match DO
	 Choose dice with lower value
	 Throw chosen dice
ENDWHILE

Note that the WHILE line could have been written as
WHILE NOT dice values match DO

Activity 1.21
a) Iteration means executing a set of statements repeatedly.
b) FOR..ENDFOR, REPEAT..UNTIL and WHILE..
	 ENDWHILE
c) The FOR..ENDFOR structure.
d) The WHILE..ENDWHILE structure.
e) The REPEAT..UNTIL structure.

Activity 1.22
a) Its name and value.
b) From outside the system. In a computerised setup, this is
	 often entered from a keyboard.
c) The relational operators are:
	 <	 (less than)
	 <=	 (less than or equal to)
	 >	 (greater than)
	 >=	 (greater than or equal to)
	 =	 (equal to)
	 <>	 (not equal to)

Activity 1.23
The LEVEL 1 is coded as:

1. Draw grids
2. Add ships to left grid
3. REPEAT
4. 	 Call grid position(s)
5. 	 Respond to other player’s call(s)
6. UNTIL there is a winner

The expansion of statement 4 would become:

4.1 Call grid reference
4.2 Get reply
4.3 WHILE reply is HIT DO
4.4 	 Mark position in second grid with X
4.5 	 Call grid reference
4.6	 Get reply
4.7 ENDWHILE
4.8 Mark position in second grid with 0

The expansion of statement 5 would become:

5.1 REPEAT
5.2 	 Get other player’s call
5.3 	 IF other player’s call matches position of ship THEN
5.4 		 Call HIT
5.5 	 ELSE
5.6 		 Call MISS
5.7 	 ENDIF
5.8 UNTIL other player misses

Activity 1.24

 Instruction Condition T/F Variables Output

1 42
2
3 75
4 F
6
7 F
9
10 Too high
11
12
13 F
2
3 15
4 F
6
7 T
8 Too low
11
12
13 F
2
3 42
4 T
5 Correct
11
12
13

number guess

guess = number

 guess < number

guess = number

guess = number

guess < number

guess = number

guess = number

guess = number T

34� Hands On AGK BASIC: Algorithms

Hands On AGK BASIC: Starting AGK� 35

In this Chapter:

T Understanding Compilation

T Getting Started with AGK

T Creating a First Project

T Installing an App on a Device

T Creating Output

T Adding Comments

T Changing Output Colour, Size and Spacing

T Adjust an App Window’s Properties

T Adding a Splash Screen

Starting AGK

36� Hands On AGK BASIC: Starting AGK

Programming a Computer

Introduction
In the last chapter we created algorithms written in a style known as structured
English, but if we want to create an algorithm that can be followed by a computer,
then we need to convert our structured English instructions into a programming
language.

There are many programming languages; C, C++, Java, C#, and Visual Basic being
amongst the most widely used. So how do we choose which programming language
to use? Each language has its own strengths. For example, Java allows multi-platform
programs to be created easily, while C is ideal for creating housekeeping applications.
So, when we choose a programming language, we want one that is best suited to the
task we have in mind.

We are going to use a programming language known as AGK BASIC. This language
was designed specifically for writing computer games which can then be used on a
wide range of devices - anything from your regular computer to a tablet or even a
smartphone. Because of this, AGK BASIC has many unique commands for displaying
graphics on various screen resolutions and for handling a wide range of input methods
- anything from a standard mouse to a touch screen or an accelerometer.

The Compilation Process
When you begin the process of creating a game using AGK, several files are
automatically created. One of these files is designed to hold your program code; the
others hold additional details required by the project. These extra files have their
contents created automatically by AGK so we need not worry about them at this
stage.

Because each game that we create consists of several files, we refer to this collection
of files as a project. One of these files (always named main.agc in every project)
contains the actual program code.

Each new project is automatically assigned its own folder.

As we will soon see, the programming language AGK BASIC uses statements that
retain some English terms and phrases. This means we can look at the set of
instructions and make some sense of what is happening after only a relatively small
amount of training.

Unfortunately, the processor inside a digital device (computer, tablet, or smartphone)
understands only instructions given in the form of a sequence of 1’s and 0’s in a
format known as machine code. The device has no capability of directly following
a set of instructions written in AGK BASIC. But this need not be a problem; we
simply need to translate the AGK BASIC statements into machine code (just as we
might have a piece of text translated from Russian to English).

We begin the process of creating a new piece of software by mentally converting our
structured English algorithm (which we will have already created) into a sequence of
AGK BASIC statements. These statements are entered using a text editor which is
nothing more than a simple word-processor-like program allowing such basic
operations as inserting and deleting text. Once the complete program has been
entered, we get the machine itself to translate those instructions from AGK BASIC

A housekeeping program
is one which performs
mundane chores such
as file copying, data
communications, etc.
and has little user input.

Hands On AGK BASIC: Starting AGK� 37

into machine code. The original program code is known as the source code; the
machine code is known as the object code and the saved version of this as the
executable file.

The translator (known as a compiler) is simply another program installed in the
computer. After typing in our program instructions, we feed these to the compiler
which produces the equivalent instructions in machine code. These instructions are
then executed by the computer and we should see the results of our calculations
appear on the screen (assuming there are output statements in the program).

The compiler is a very exacting task master. The structure, or syntax, of every
statement must be exactly right. If you make the slightest mistake, even something
as simple as missing out a comma or misspelling a word, the translation process will
fail. When this happens in AGK, a window appears giving details of the error. A
failure of this type is known as a syntax error - a mistake in the grammar of your
commands. Any syntax errors have to be corrected before you can try compiling the
program again.

When you are working on a project, it is best to save your work at regular intervals.
That way, if there is a power cut, you won’t have lost all your code!

When the program code is complete, we compile our program (translating it from
source code to object code). When the translation process is finished, yet another file
is produced. This new file (which has an .exe extension), contains the object code. To
run our program, the source code in the executable file is loaded into the computer’s
memory (RAM) and the instructions it contains are carried out. The whole process is
summarised in FIG-2.1.

If we want to make changes to the program, we load the source code into the editor,
make the necessary modifications, then save and recompile our program, thereby
replacing the old version of source and executable files.

FIG-2.1

The Compilation
Process

Start
new project

AGK creates
all �les

Enter code
in main.agc

Compile
source code

Object
code

Error
messages

Run
program

38� Hands On AGK BASIC: Starting AGK

Summary
±	To program a computer, our structured English algorithms must be translated

into a computer language.

±	An AGK project consists of several files.

±	Each AGK project is automatically assigned its own folder.

±	The AGK BASIC code is known as the source code.

±	The computer can only execute statements given in machine code.

±	A compiler is used to translate a program from source code to machine code.

±	Source code statements must conform to an exact grammar or syntax.

±	Any deviation from that grammar is known as a syntax error.

Activity 2.1

a) What type of instructions are understood by a computer?

b) What piece of software is used to translate a program from source code to
	 object code?

c) Misspelling a word in your program is an example of what type of error?

Hands On AGK BASIC: Starting AGK� 39

Starting AGK

Introduction
AGK is an Integrated Development Environment (IDE) software package designed
to create 2D games that can then be run on various hardware devices. IDE simply
means that the editing, compiling and testing are all achieved while working from
within a single package.

AGK allows programs to be written in either BASIC or C++. This book covers only
the BASIC language aspect of AGK.

AGK was created by Lee Bamber, CEO of The Game Creators Ltd and was derived
from his earlier creation, DarkBASIC which is a programming language designed to
develop games for the PC platform only.

Starting Up AGK
Once you’ve installed AGK, running the package will present you with the screen
shown in FIG-2.2.

At the centre of the application window is the Tip of the Day window. If you don’t
want this to appear every time you start up AGK, just deselect the Show tips at
startup check box. Once you close the Tip of the Day window, you are left with the
three main areas of the AGK IDE (see FIG-2.3):

	 The Main Edit Window	 -	 This where your program code is
						 displayed once you start working on a
						 project.
	 The Project Panel		 -	 This displays a tree structure of the files
						 within the project(s) currently open. It
						 only shows the names of those files
 						 containing code; the other files created by
						 a project are not listed.
	 Compiler Output Panel	 -	 This panel (labelled as Logs and others)
						 is used primarily to display information
						 output by the compiler.

FIG-2.2

The AGK Startup
Screen

40� Hands On AGK BASIC: Starting AGK

 The steps required to create your first project are shown in FIG-2.4.

FIG-2.4

Creating a New
Project

Since this is the our first project, we
click on the Create a new Project
option in the Main Edit Window
(File|New|Project would work too).

This displays the Create from
Template window which offers three
different layout styles for your new
project’s display.

For this project, AGK Generic project
is selected by double clicking that
option.

This starts up the AGK project wizard.
The first screen simply states that the
wizard has started.

Skip this page next time

Select to skip
this page on any other

new projects

Double-click
this option

FIG-2.3

AGK Layout

Main
Edit Window

Projects
Panel

Compiler
Output

Hands On AGK BASIC: Starting AGK� 41

The new window created by running the sample program can be closed in the standard
way by clicking on the X button at the top right.

Activity 2.2

Before you start up AGK, create a main folder called HandsOnAGK on your
disk drive. We’ll use this as the main folder for all the AGK projects we are
going to create throughout this book.

Load AGK then create, compile, and run your first project (named
FirstProject) exactly as described in FIG-2.4, closing the app window once it
has been run.

This project
will be used for
the remaining
programming
activities in this
chapter.

The second page of the wizard is
where the project name and folder
are selected. Other details are filled in
automatically.

The Projects Panel now shows the
new project and a folder called
Sources.

Enter
project name

Select
folder

Project name

Clicking on the Sources folder reveals
the two source code files used by the
project. main.agc will contain your
code.

Double clicking on main.agc in the
Project Panel opens its contents in a
tabbed panel within the main edit
window.

Your code
is stored in

this file and its
code will be
displayed

In fact, the AGK wizard has created a
simple program within main.agc.
This code can be run by pressing the
Run button.

The sample program opens a small
window to display its output.

Double-click
main.agc

Project title:
FirstProject

Folder to create project in:
C:\AGKProject\AGKProgra

ËË The project will
create a new subfolder
off the folder you select
here. That subfolder will
have the same name as
your project.

FIG-2.4
(continued)

Creating a New
Project

42� Hands On AGK BASIC: Starting AGK

You may have noticed that the AGK software displayed messages in the compiler
output area at the bottom of the screen (titled as Logs & others) to tell you that the
app had been compiled.

The Program Code
FIG-2.5 shows the code in main.agc that was automatically generated for us.

The line numbers that also appear in the edit window are not part of the code and are
only there to help you identify the position of any line within the code.

Let’s take a look at the code that was already generated for us and see what each of
the lines means. The first lines are:

rem
rem AGK Application
rem

rem A Wizard Did It!

Blank lines and any lines starting with the term rem (short for REMARK) are treated
as a comment by the compiler. Comments are there only for the benefit of us humans
who happen to read the program code and are entirely ignored by the compiler when
translating the instructions into machine code. Good comments will tell us the overall
aim of the program as well as the purpose of individual sections of code. Comments
can appear anywhere within a program.

do

loop

These two terms mark the start and end of an infinite loop - notice that no condition
is given. Most AGK programs contain this loop which is designed to make sure all
the code between these lines is continually executed until the user closes the app
window. Without a loop of some type, your program would start and finish so quickly
that you would never have time to see what was displayed in the app window.

Print (“Hello world”)

The Print() statement is used to state that some piece of information is to be
displayed in the app window. The information itself is specified within a set of round
brackets (more properly called parentheses). When that information contains letters
(as opposed to numbers), then those letters must be enclosed in double quotes. Hence,
the statement given above is an instruction to display the words Hello world on the
screen. Note that the quotes themselves are not displayed.

Sync()

FIG-2.5

The Generated
Code

rem
rem AGK Application
rem
rem A Wizard Did It!
do
 	 Print(“hello world”)
 	 Sync()
loop

Hands On AGK BASIC: Starting AGK� 43

The Sync() statement is a command to update the contents of the app window. If you
make any changes to what is displayed on the screen (for example, by executing a
Print() statement), then you need to follow this with the statement Sync(). Without
Sync() the screen display will not be updated.

Notice that the Sync() statement makes use of parentheses even although no values
are placed within them. However, omitting these parentheses would create a syntax
error.

Using the Compile button and then Run button separates the compilation and
execution stages of the process into two distinct steps.

Transferring Your App to a Tablet or Smartphone
Once your app has been coded and tested, it needs to transferred wirelessly to the
device you want to use it on.

To transfer the program to another device you need to broadcast a Wi-Fi signal. That
means you either need to have a Wi-Fi router attached to your PC or be using a laptop
with built-in Wi-Fi.

The device receiving your program must be running the AGK Player app. This app
will detect your program being broadcast, download, and run it. Downloading the
free AGK player app is straightforward for most platforms; just go to the app store
and search for “AGK player”.

However, things are a bit more complicated if you have an Apple device. Apple won’t
support the AGK Player in their app store. As an alternative you can download the
AGK Viewer from their store. The viewer isn’t ideal but it will let you see your app
running on an Apple device. To run the AGK Player on your Apple device you will
need to register as a developer. Details of how to do this are on the Game Creators’
web site.

To transfer the app you have written, start by running the AGK Player app on the
target device (iPad, iPhone, Android tablet, etc.) and then press the Compile and
Broadcast button on the AGK BASIC IDE to broadcast the app via your wireless
router to your device. Your app should now download and automatically start
executing on your device from within the app player.

Activity 2.3

Change the Print() statement within main.agc so that the text enclosed in
the double quotes reads My first app. This time click the Compile then Run
buttons to compile and run the modified program. Was the new text displayed
in the app window?

Select File|Save File to save your modified program.

Activity 2.4

Make sure you have the AGK app player running on your device.

With the latest version of the project you created in Activity 2.3 showing on the
AGK IDE, press the CB button. Check that the program is now showing on
your device.

If you want the app
to run on your PC
and smart device at
the same time, press
the Compile, Run
and Broadcast
button to the right
of the Compile and
Broadcast button.

Compile Button

Run Button

Compile and
Broadcast Button

44� Hands On AGK BASIC: Starting AGK

Your program is not yet a true app - you can’t save it on your device - it can only be
executed via the app player. To create a true app it has to be available from the app
store for your device (see the Game Creators’ web site for details).

Summary
±	To start a new project:

 		 Click on the Start a New Project option in AGK’s IDE.
		 (Alternatively, choose File|New|Project from the main menu.)
		 Select AGK Generic Project.
		 Enter the project’s name.
		 If necessary, select a new folder for the project.
		 In the Projects Panel, click on Sources.
		 Click on main.agc to display the project code.

± To execute a project:

		 Click on the Compile button.
		 Click on the Run button.

±	To save an updated program:

		 Select File|Save File

±	To run an app on your mobile device:

		 Run the AGK Player app on your mobile device.
		 Press the Compile and Broadcast button in the AGK IDE.

Hands On AGK BASIC: Starting AGK� 45

First Statements in AGK BASIC

Introduction
Learning to program in AGK BASIC is very simple compared to other languages
such as C++ or Java. Unlike some other programming languages, it has no rigid
structure that the program itself must adhere to.

Now we need to start looking at the formal statements allowed in AGK BASIC and
see how they can be used in a program.

Print()
We’ve already come across the Print() statement in our first program, so we already
know that it is used to display information on the screen, but we need to know it’s
exact format so that we don’t create a syntax error by making a mistake in constructing
the statement. The format of the Print() statement is shown in FIG-2.6.

This type of diagram is known as a syntax diagram for the obvious reason that it
shows the syntax of the statement.

Each enclosed value in the diagram is known as a token (there are four tokens in the
Print() statement). When you use a Print() statement in your program, its tokens
must conform to those shown in the diagram. Some of the tokens must be an exact
match for those in the diagram: Print, (and) while others (only value in this
case) have their actual value determined by the programmer.

Fixed values are shown in round-cornered boxes, user-defined values are shown in
regular boxes. In the case of the Print() statement, the term value is used to mean
an integer value, a real value or a string value.

So, using the syntax diagram as a guide, we can see that the following are valid
Print() statements:

Print(“Hello world”)
Print(12)
Print(0)
Print(-34.6)

while the following are not:

	 Print 36		 (parentheses are missing)
	 Print(Goodbye)	 (no quotes)
	 Print(‘Help!’)	 (single quotes used)	

FIG-2.6

Print()

Print ()value

Activity 2.5

Which of the following are NOT valid Print() statements:

a)	 Print(“-9.7”)
b)	 Print(0.0)
c)	 Print(23, 51)

You may want to
save your project
after each Activity by
selecting

File|Save File

46� Hands On AGK BASIC: Starting AGK

Spaces

We can add spaces to a statement as long as those spaces do not split a single token
into separate parts. So, for example, it is quite valid to write the line

	Print (123)

since each token can easily be identified, but

	Pr int (12 3)

is not acceptable because the Print and 123 tokens have both been split into two
parts.

Spaces can be omitted as long as doing so does not make it impossible to tell where
one token ends and another begins. This is really only a problem when two or more
adjacent tokens are constructed entirely from letters or numbers. So if we have a
statement which begins with the code

	if x = 3

then writing

	ifx=3

would be invalid because the compiler would not be able to recognise the if and x
as two separate tokens. On the other hand, the line

	Print(123)

is correct because no adjacent tokens are constructed from alphanumeric characters.

Multiple Output

When we use two or more Print() statements, each value printed will be displayed
on a separate line. For example, when the lines

	Print(“Hello”)
	Print(“Goodbye”)
	Sync()

are included in a program, they will create the output

	 Hello
	 Goodbye

Each message is on a separate line because the Print() statement always displays a

ËË Alphabetic and
numeric characters are
collectively known
as alphanumeric
characters.

Activity 2.6

Modify your program so that the code now reads
	 do
		 Print(“First line”)
		 Print(“Second line”)
		 Sync()
	 loop
Compile and run the program. Resave your project.	

Hands On AGK BASIC: Starting AGK� 47

new line character after the value specified and this causes the screen cursor to move
to a new line.

Adding Comments
It is important that you add comments to any programs you write. These comments
should explain the purpose of the program as a whole as well as what each section of
code is doing. It’s also good practice, when writing longer programs, to add comments
giving details such as your name, date, programming language being used, hardware
requirements of the program, and version number.

In AGK BASIC there are four ways to add comments:

	 Add the keyword rem. The remainder of the line becomes a comment (see
	 FIG-2.7).

	 Add an apostrophe character (you’ll find this on the top left key, just next to
	 the 1). Again the remainder of the line is treated as a comment (see FIG-2.8).

	 Add two forward slashes followed by the descriptive text (see FIG-2.9).

	 Add several lines of comments by starting with the term remstart and
	 ending with remend. Everything between these two words is treated as a
	 comment (see FIG-2.10).

This diagram introduces another symbol - a looping arrowed line. This is used to
indicate a section of the structure that may be repeated if required. In the diagram
above it is used to signify that any number of comment lines can be placed between
the remstart and remend keywords. For example, we can use this statement to create
the following comment which contains three lines of text:

		 remstart
			 This program is designed to play the game of						
			 battleships.
			 Two peer-to-peer computers are required.
		 remstart

PrintC()
The PrintC() statement is similar to Print() but does not add a new line character
to the output. This means that each PrintC() statement’s output is positioned on the
screen immediately after the previous value. Hence,

	PrintC(“A”)
	PrintC(“B”)
 Sync()

FIG-2.7

rem rem text

FIG-2.8

Apostrophe
Comments

text`

FIG-2.9

// Comments

text//

FIG-2.10

remstart..remend

remstart

text

remend

48� Hands On AGK BASIC: Starting AGK

would display	 AB

Other Statements which Modify Output
Other statements allow us to make various changes to how the text appearing on our
screen is presented. We can change its colour, size, transparency and even the space
between the characters.

Before we get started on instructions involving colour, perhaps it might be useful to
go over a few basic facts about colour.

All colours you see on a monitor or TV are derived from the three primary colours
red, green and blue. By varying the brightness of each of these three colours we can
achieve any colour or shade the eye is capable of seeing. For example, mixing just
red and green gives us yellow; blue and green gives us a colour called cyan, and blue
and red gives magenta (see FIG-2.11).

Notice that all three colours together give white. The absence of all three colours
gives black.

By varying the intensity (brightness) of each primary colour, we can create any
shades or hues we require. AGK allows the intensity to vary between 0 (no colour)
to 255 (full intensity). So pure white is achieved by setting all three colours to an
intensity value of 255. For shades of grey, all three colours must have identical
brightness values, but the lower that value, the darker the shade of grey.

SetPrintColor()

The SetPrintColor() sets the colour of all output created using the Print() and
PrintC() statements. It can also be used to set the transparency of the text.

The statement’s format is shown in FIG-2.12.

This syntax diagram introduces the use of square brackets. Tokens within square

Activity 2.7

Change the two Print() statements in your program to PrintC() statements
and observe the difference in output when the program is run.

FIG-2.11

Colours Green

CyanYellow

White

Red BlueMagenta

FIG-2.12

SetPrintColor()

SetPrintColor ()ired , igreen , iblue itrans,[]

Hands On AGK BASIC: Starting AGK� 49

brackets are optional and can be omitted when using the statement.

In the above diagram:

	 ired		 is an integer value giving the strength of the red component
			 within the colour. This value should be in the range 0 to 255
			 (0: no red, 255: full red).

	 igreen 	 is an integer value (0 to 255) giving the strength of the green
			 component. (0: no green, 255: full green)

	 iblue		 is an integer value (0 to 255) giving the strength of the blue
			 component. (0: no blue, 255: full blue)

	 itrans		 is an integer value (0 to 255) giving the amount of transparency.
			 (0: invisible, 255: opaque)

Since the transparency value is optional and therefore can be omitted (in which case
transparency stays at its current setting), we can use the statement simply to set the
colour of any text being displayed by the Print() or PrintC() statements.

For example,

	SetPrintColor(0,0,0)			 rem *** sets text to black
	SetPrintColor(255,255,255)	rem *** sets text to white
	SetPrintColor(255,0,0)		 rem *** sets text to red

The SetPrintColor() statement must appear before the Print() or PrintC()
statements whose output you wish to affect.

The statement only takes effect after a Sync() statement is executed.

Once the colour has been set, all subsequent output will be in the specified colour.
This means that there is no real need to place the SetPrintColor() statement inside
the do .. loop structure where it will be executed every time the loop is repeated.
Instead, that line of code can be moved to immediately before the do statement.
Placed here, the statement will be performed only once, at the start of the program.

If there was no change to the output, what was the point of moving the statement?
The more lines of code that need to be executed, the slower a program runs. Let’s say
the statements within the loop are executed 200 times before you terminate the

ËË The value names
start with i to indicate
that integer values are
required. Where a real
number is needed, the
value name will start
with an f (for float).
String values will start
with an s.

Activity 2.8

Add a SetPrintColor() statement to your program, placing it immediately
before your two PrintC() statements. Choose any colour values you wish.

Compile and run the program to check that the output is correct.

Activity 2.9

Reposition your SetPrintColor() statement, placing it on the line above do.

Compile and run the program again.

There should be no change to the output.

50� Hands On AGK BASIC: Starting AGK

program. With the SetPrintColor() inside the loop, it would have been executed
200 times; with it outside the loop it is executed only once - so the program becomes
more efficient.

If we include a value for itrans when we use SetPrintColor(), we can set the
transparency of all text on the screen. The default transparency is 255, meaning the
output is fully opaque. With a value of zero, the text would be invisible.

SetPrintSize()

SetPrintSize() (see FIG-2.13) sets the size of the text displayed by a Print() or
PrintC() statement.

where:

	 fsize		 is a real number setting the size of characters. The default value
			 for characters is about 3.5.

The reason that the text seems blurred when it is enlarged is that the text itself is
stored as an image. Enlarging that image causes blurring.

SetPrintSpacing()

This statement (see FIG-2.14) adjusts the spacing between the characters shown on
the screen.

where:

	 fgap		 is a real number giving the gap between characters. The default 	
			 is zero. Larger values widen the gap; negative values cause the 	

Activity 2.10

Modify the SetPrintColor() statement in your program, adding 126 as the
transparency value.

Run the program and see what effect the changes have made to the output.

Try other transparency values to see their effect.

FIG-2.13

SetPrintSize() SetPrintSize ()fsize

Activity 2.11

Add the line

	 SetPrintSize(8.6)

immediately after your SetPrintColor() statement (reset the transparency
value to 255).

Compile and run the program. What do you notice about the quality of the text
produced?

FIG-2.14

SetPrintSpacing() ()fgapSetPrintSpacing

Hands On AGK BASIC: Starting AGK� 51

			 gap to decrease and even to make letters overlap.

Message()

Another way of displaying text on the screen is to use the Message() statement. This
creates a more prominent output, placing the text in a separate window. The format
of the Message() statement is shown in FIG-2.15.

where

	 stext		 is a string containing the message to be displayed.

For example, the line

	Message(“hello world”)

produces the output shown in FIG-2.16 when run on a PC.

The exact style of the window produced depends on the device on which your app is
being run.

SetClearColor()

You will have noticed that the window created by your AGK app always has a black
background. This default color can be changed using the SetClearColor() statement
which has the format shown in FIG-2.17.

where:

	 ired		 is an integer value (0 to 255) giving the strength of the red
			 component.
			
	 igreen 	 is an integer value (0 to 255) giving the strength of the green
			 component.

Activity 2.12

Add a SetPrintSpacing() statement to your program, placing it before the do
.. loop structure. Set the gap size to 5.5.

Compile and run the program to check how the output is changed.

Change the value used to -2.5 and observe the effect on the output.

FIG-2.15

Message() Message ()stext

FIG-2.16

A Typical
Message Window

FIG-2.17

SetClearColor() SetClearColor ()ired igreen iblue

52� Hands On AGK BASIC: Starting AGK

	 iblue		 is an integer value (0 to 255) giving the strength of the blue
			 component.

Often this statement will appear at the start of a program, but you may wish to change
the colour at a later stage, perhaps to indicate that a game has entered a new phase.

Positioning Print() Statements

We have placed the various statements affecting the colour, size and spacing of our
text before the do..loop structure on the basis that these commands need only be
performed once. So you may be tempted to think that surely we can do the same thing
with the Print() and Sync() statements since the displayed text remains unchanged
throughout the running of the program. Let’s see what happens when we try this.

As you can see from the output, for a simple program such as this, moving the
statements has had no obvious effect on the display produced. We are left with an
empty do..loop which makes sure that the program does not terminate before we
click the app window’s close button.

Summary
± The main file in an AGK project is main.agc which contains the program code.

± The AGK development package is an Integrated Development Environment.
This allows edit, compiling and testing to be performed from within the same
program.

± To download an app to your digital device, the player must be installed and
running on that device and the app broadcast from the AGK IDE.

± When an app is being tested it creates an app window.

± Comments can be added to your code using rem, `, //, or remstart..remend.

± Comments help us understand the purpose of a piece of code but are ignored
by the compiler.

±	Use Print() to display information on the screen.

±	Use PrintC() to display information without moving to a new line afterwards.

±	Use SetPrintColor() to set the colour used when displaying text.

±	Use SetPrintSize() to set the size of future text output.

±	Use SetPrintSpacing() to set the spacing between characters in future text
output.

Activity 2.13

Change the background of the app window to red and test your program.

Activity 2.14

Move the PrintC() and Sync() statements in your program so that they are
positioned immediately before the do statement.

What effect does this have when you run your program?

Hands On AGK BASIC: Starting AGK� 53

±	Use Message() to display a message in a separate window.

±	Use SetClearColor() to set a background colour for the app screen.

54� Hands On AGK BASIC: Starting AGK

The Second Source File
Every project you create actually contains a second .agc file called setup.agc. You
can see it listed in the Projects Panel immediately below main.agc.

Although you are not free to add lines of code to this file as you can with main.agc,
you are allowed to change the values given. Those values determine the title and
dimensions of the window in which your app appears. The window of a typical
program (see FIG-2.16) reflects the details given in setup.agc.

By changing the values specified in the first three lines of setup.agc (ignoring the rem
lines), we can change the characteristics of the window.

These characteristics given in setup.agc only affect the layout of the window on your
PC. Other statements (covered later) need to be included in your program to set the
app screen size on a tablet or phone.

FIG-2.16

The App Window

The window’s
title

Height

Width

Activity 2.15

Double click setup.agc in the Projects Panel to display its code. Change the
appropriate existing lines to read:

	 title=My First App
	 width=320
	 height=480

Make sure the only spaces with these lines are those in the title.

Compile and run your program to see what changes this has made.

Hands On AGK BASIC: Starting AGK� 55

A Splash Screen
A common feature of many games is a splash screen. A splash screen is simply a
graphic that displays for a few moments at the start of the game. Typically a splash
screen will contain an image giving the flavour of the game play that is about to
follow as well as the name of the game and the publishing company.

AGK allows you to add a splash screen to your game without any coding whatsoever.

If you load Windows Explorer and have a look in the folder created by AGK to hold
the files belonging to your project (HandsOnAGK/FirstProject), you should see
contents similar to that shown in FIG-2.17.

The media folder is where we need to place our splash screen graphic. The file must
be in PNG format and be called AGKSplash.png. No other name is acceptable. The
image is best set to the same size as the window dimensions (in our case, 480 x 320).
An example of a splash screen is shown in FIG-2.18.

ËË The splash
screen only appears
automatically when
running your app on
a PC.

FIG-2.17

AGK Project’s
Files

Rather than create
your own image,
you can use the
one supplied in
the downloads that
accompany this
book.

FIG-2.18

A Splash Screen

Activity 2.16

Open a paint program you have available and create a 480 pixels high by 320
pixels wide image. Save the file in PNG format in the folder HandsOnAGK/
FirstProject/Media naming the file AGKSplash.png.

In AGK, recompile your program and run it. You should see your splash screen
appear when the app window first opens.

56� Hands On AGK BASIC: Starting AGK

Starting a New Project
When you first start up AGK for a work session, we’ve already seen that it will give
you the option to create a new project. Should you want to create more new projects
during that session, you can do so from the main menu (File|New|Project).

However, the Projects Panel will display all of the projects you have been using (see
FIG-2.19).

Having several projects open at the same time can be a bit confusing when you first
start using AGK, so the best option is to close projects that you are not currently
working on. FIG-2.20 shows how to close a project from the Projects Panel.

From now on, make sure you always close any old project before starting a new one.

FIG-2.19

Multiple Projects

Three
projects

FIG-2.20

Multiple Projects

Right-click
cursor over project

name...
...and select
Close project

Hands On AGK BASIC: Starting AGK� 57

App Window Properties

Measurements
By default, AGK apps use a percentage measurement system. This means that no
matter the actual dimensions of the an app window, AGK always treats the width as
100% and the height as 100% (see FIG-2.21).

When you want to position an item on the screen it is done using percentage
measurements. For example, the position (50,50) represents the middle of the app
window irrespective of the window’s actual dimensions.

Percentage values are also used when setting the size of various visual elements. For
example, earlier in this chapter we made use of the SetPrintSize() statement to
resize the text created by any subsequent Print() statement. The value supplied to
this statement represents the height of the text as a percentage of the screen height.
Of course, this means that text set to a height of 4 will appear taller in a long window
and smaller in a short window. In fact, you can see that in the “Hello world” text
visible in FIG-2.21 above.

All programs in this book use the default percentage system.

SetDisplayAspect()

When using the percentage measuring system, the setup.agc file is used to set the
actual size of the app window on your PC, but if you intend to transfer that app to
another device such as a smartphone or tablet, you should explicitly set the aspect
ratio (width to height) using the SetDisplayAspect() statement (see FIG-2.22).

where:

	 fratio		 is a real number giving the width to height ratio. For example,
			 iPhone and iPad have an aspect ratio of 4.0/3.0 (1.3333).

Use zero as the fratio value if you want the width and height values in the setup.agc
file to be used to determine the aspect ratio. Use -1 if you want the app to fill the
whole screen irrespective of aspect ratio. Using this last option may distort visual

FIG-2.21

The Screen’s Percentage
Measurement System

100%

100%

100%

100%

FIG-2.22

SetDisplayAspect() SetDisplayAspect ()fratio

58� Hands On AGK BASIC: Starting AGK

elements of the app if the device’s aspect ratio is different to that used when developing
the app (like watching an old 4/3 TV program on your widescreen TV).

SetVirtualResolution()

If you would rather work with a resolution based on pixels, have your program
execute the SetVirtualResolution() statement when it starts up. The statement’s
format is shown in FIG-2.23.

where:

	 iwidth		 is an integer value giving the nominal width of the app window
			 in pixels.

	 iheight	 is an integer value giving the nominal height of the app window
			 in pixels.

If you were writing an app for the original iPhone, you would set the resolution to
320×480 using the line:

SetVirtualResolution(320,480)

When you are developing your app on your PC, the app window will take on the
actual size specified in the SetVirtualResolution() statement. However, when you
transfer the app to another device, the app will expand (or contract) to fit that device’s
screen. For example, if you run your 320x480 app on a newer iPhone with its 640x960
resolution, your AGK will automatically expand to fill the full screen with every
virtual pixel equal to two actual pixels.

This is why the term virtual resolution is used; this development resolution may in
fact be different from the actual resolution used when the app is running on a device
other than your PC.

When you use SetVirtualResolution() in your app, all screen positions and sizes
are given in virtual pixels.

No matter whether you use the percentage or virtual pixel system, a problem arises
when the device on which your app is running has a different aspect ratio (width -to-
height) than that specified in your app. For example, while all of Apple’s mobile
devices have a width to height ratio of 3-to-4, the Asus EEE Transformer has a an
aspect ratio of 5-to-8 (resolution of 800 x 1280 in portrait mode). Expanding an app
designed for a 3-to-4 screen to fill a 5-to-8 screen would cause distortion of any
images being displayed (circles would become ovals!). AGK handles the problem of
running a 3-to-4 app on a 5-to-8 screen by showing the app within the largest possible
3-to-4 area of the screen and adding a border colour to the unused part of the display.

SetBorderColor()

You can specify the border colour to be used when your app runs on a device with a
different aspect ratio to that specified in the app’s code using the SetBorderColor()
statement (see FIG-2.24).

FIG-2.23

SetVirtualResolution() SetVirtualResolution ()iwidth iheight

FIG-2.24

SetBorderColor() SetBorderColor ()ired igreen iblue

Hands On AGK BASIC: Starting AGK� 59

where:

	 ired		 is an integer variable (0 to 255) giving the intensity of the red
			 component of the border colour to be used (0: no red, 255: full
			 red).

	 igreen		 is an integer variable (0 to 255) giving the intensity of the green
			 component of the border colour (0: no green, 255: full green).

	 iblue		 is an integer variable (0 to 255) giving the intensity of the blue
			 component of the border colour (0: no blue, 255: full blue).

To create a grey border we could use a statement such as:

	SetBorderColor(120,120,120)

SetWindowTitle()

For apps that are running in a windows based environment (on PCs or Macs), you
can set the title that appears at the top of the window using the SetWindowTitle()
statement (see FIG-2.25).

where

	 stext		 is a string containing the text to appear in the window title bar.

A typical statement would be:

	SetWindowTitle(“Jigsaw Game”)

Further screen-handling statements are covered in Chapter 19.

Summary
±	In the setup.agc file you can specify the dimensions and window title for you

app when running it in a Microsoft Windows environment.

±	When running your app in Windows, a splash screen will appear while the
app is loading if you have a file called AGKSplash.png in the project’s media
folder.	

±By default, AGK uses a percentage coordinate system within the app window.

±	To open further projects, use File|New|Project in the IDE.

±	By default, all programs use a percentage system for screen dimensions.

±	Use SetVirtualResolution() to use a virtual pixel coordinate system.

±	Use SetDisplayAspect() to set the width to height ratio of the screen/window.

±	Use SetBorderColor() to specify a colour for any part of the physical screen
not included in the app’s output area.

±	Use SetWindowTitle() to specify a title for any windows-based app.

FIG-2.25

SetWindowTitle() SetWindowTitle ()stext

60� Hands On AGK BASIC: Starting AGK

Solutions
Activity 2.1

a)	 Machine code instruction. These are a stored as a 		
	 sequence of binary digits.
b)	 A compiler.
c)	 A syntax error.

Activity 2.2
No solution required.

Activity 2.3
Your code should now read (rem statements have been
omitted):

	 do
	 	 Print(“My first app”)
		 Sync()
	 loop		

Compile and run your code.

The new text should be displayed in the app window when
the program is run.

Select File|Save File

Activity 2.4
No solution required.

Activity 2.5
a) 	 Valid. Any characters can be enclosed in quotes - 		
	 including numeric ones.

b)	 Valid. A real number.

c)	 Invalid. Only a single value can be displayed.

Activity 2.6
Your program code should be:

	 do
		 Print(“First line”)
		 Print(“Second line”)
		 Sync()
	 loop		

The output should be:
	 First line
	 Second line

Activity 2.7
Program code:

	 do
		 PrintC(“First line”)
		 PrintC(“Second line”)
		 Sync()
	 loop		

The output should be:
	 First lineSecond line

If you want a space between the two outputs, you would need
to include a space inside the quotes at the end of the first
piece of text or at the start of the second.

Activity 2.8
Program code (your colour values will be different):

	 do
		 SetPrintColor(255,255,0) rem *** yellow ***
		 PrintC(“First line”)
		 PrintC(“Second line”)
		 Sync()
	 loop		

Activity 2.9
Program code (your colour values will be different):

	 SetPrintColor(255,255,0) rem *** yellow ***
	 do
		 PrintC(“First line”)
		 PrintC(“Second line”)
		 Sync()

	 loop		

Activity 2.10
Program code (your colour values will be different):

	 SetPrintColor(255,255,0,126) rem *** yellow ***
	 do
		 PrintC(“First line”)
		 PrintC(“Second line”)
		 Sync()
	 loop		

The text output will appear darker as the black background
shows through.

Activity 2.11
Program code (your colour values will be different):

	 SetPrintColor(255,255,0,126) rem *** yellow ***
	 SetPrintSize(8.6)
	 do
		 PrintC(“First line”)
		 PrintC(“Second line”)
		 Sync()
	 loop		

The text will appear larger but somewhat blurred.

Activity 2.12
Program code (your colour values will be different):

	 SetPrintColor(255,255,0,126) rem *** yellow ***
	 SetPrintSize(8.6)
	 SetPrintSpacing(5.5)
	 do
		 PrintC(“First line”)
		 PrintC(“Second line”)
		 Sync()
	 loop		

The characters in the output text will be widely spaced.

The SetPrintSpacing() line should then be changed to
SetPrintSpacing(-2.5)

The characters will now bunch together.

Activity 2.13
Program code:

	 SetClearColor(255,0,0)
	 SetPrintColor(255,255,0,126) rem *** yellow ***
	 SetPrintSize(8.6)
	 SetPrintSpacing(-2.5)
	 do
		 PrintC(“First line”)
		 PrintC(“Second line”)
		 Sync()
	 loop		

Hands On AGK BASIC: Starting AGK� 61

Activity 2.14
Program code:

	 SetClearColor(255,0,0)
	 SetPrintColor(255,255,0,126) rem *** yellow ***
	 SetPrintSize(8.6)
	 SetPrintSpacing(-2.5)
	 PrintC(“First line”)
	 PrintC(“Second line”)
	 Sync()
	 do

	 loop		

The output remains unchanged.

Activity 2.15
The app window title and dimensions should be changed.

Activity 2.16
No solution required.

62� Hands On AGK BASIC: Starting AGK

Hands On AGK BASIC : Data� 63

In this Chapter:

T Constants

T Variables

T Naming Variables

T Assigning Values to Variables

T Arithmetic Operators

T Operator Precedence

T Random Numbers

T Determining the Elapsed Time

Data

64� Hands On AGK BASIC: Data

Program Data

Introduction
Every computer game has to store and manipulate facts and figures (more commonly
known as data). For example, a program may store the name of a player, the number
of lives remaining or the time left in which to complete a task.

We’ve already seen that all basic data can be grouped into three basic types:

	 integer 	 - 	 any whole number, positive, negative or zero
	 real 		 - 	 any number containing a decimal point	
	 string	 	 - 	 any collection of characters (may include numeric
				 characters)

For example, if player Ian Knot had 3 lives and 10.6 minutes to complete a game,
then:

	 3 			 is an example of an integer value
	 10.6 			 is a real value
 	 Ian Knot 		 is an example of a string

Constants
When a specific value appears in a computer program’s code it is usually referred to
as a constant. Hence, in the statement

	Print(7)

the value 7 is a constant. When identifying a value as a constant, the constant’s type
is often included in the description, so, for example, 7 is an integer constant.

Variables
Most programs not only need to display information, but also need to store data and
calculate results. To store data in AGK BASIC we need to use a variable. A variable
is, in effect, reserved space within the computer’s memory where a single value can
be stored. Every variable in a simple program is assigned a unique name and can
store only a single value. When a variable is first created, the type of value it can store
(integer, real or string) is specified. No other type of value can be stored in that

Real values are
also known as
floating-point
or simply float
values.

Activity 3.1

Identify the type of value for each of the following :
	
a) -9			 b) abc			 c) 18			 d) 12.8		
e) ?			 f) 0			 g) -3.0			 h) Mary had		
i) 4 minutes		 j) 0.023

Activity 3.2

What type of constants are the following:

a) -12			 b) Elizabeth		 c) 3.14			 d) 27.0

Hands On AGK BASIC: Data� 65

variable. For example, an integer variable cannot store a string value.

Integer Variables

In AGK BASIC variables are created automatically as soon as we mention them in
our code. For example, let’s assume we want to store the number of lives allocated
to a game player in a variable called lives. To do this in AGK BASIC we simply write
the line:

	lives = 3

This sets up a variable called lives in the computer’s memory and stores the value 3
in that variable (see FIG-3.1)

This instruction is known as an assignment statement since we are assigning a value
(3) to a variable (lives).

You are free to change the contents of a variable at any time by assigning it a different
value. For example, we can change the contents of lives with a line such as:

	lives = 2

When we do this, any previous value will be removed and the new value stored in its
place (see FIG-3.2).

The variable lives is designed to store an integer value. In the lines below, a, b, c, d,
and e are also integer variables. So the following assignments are valid

	a = 200	
	b = 0
	c = -8

but the lines below will cause problems

	d = 3.14	
	e = 1.9

since they attempt to store real constants in variables designed to hold integers. AGK
BASIC won’t actually report an error if you try out these last two examples, it simply
rounds the fractional part of the numbers and ends up storing 3 in d and 2 in e (see
FIG-3.3). Fractions of 0.5 and above are rounded up, other values are rounded down.

FIG-3.1

Storing Data in a
Variable

Variable
name

3

Value
storedlives

2

Contents
changedlives

FIG-3.2

Changing the Value
in a Variable

3

d

d = 3.14 e = 1.9 2

e

Rounded
down

Rounded
up

FIG-3.3

Integer Variables Round
Real Values

66� Hands On AGK BASIC: Data

Real Variables

If you want to create a variable capable of storing a real number, then you must end
the variable name with the hash (#) symbol. For example, if we write

	d# = 3.14	
	e# = -1.9

we have created variables named d# and e#, both capable of storing real values (see
FIG-3.4).

Any number (real or integer) can be assigned to a real variable, so we could write a
statement such as:

	d# = 12

Although we may assign an integer to a real variable, the value will be stored as a
real. Therefore, when the statement above has been executed, d# will contain 12.0.

If any value can be stored in a real variable, why bother with integer variables?
Actually, you should always use integer values wherever possible because some
harware can be much faster at handling integer values than real ones. Also, real
numbers can be slightly inaccurate because of rounding errors within the machine.
For example, the value 2.3 might be stored as 2.2999987. A last consideration is that
a real variable requires more space in the computer’s memory than an integer one.

String Variables

Finally, if you want to store a string value, you need to use a string variable. String
variable names must end with a dollar ($) sign. The value to be stored must be
enclosed in double quotes. We could create a string variable named player$ and store
the name Liz Heron in it using the statement:

	player$ = “Liz Heron”

The double quotes are not stored in the variable (see FIG-3.5).

Absolutely any value can be stored in a string variable as long as that value is enclosed
in double quotes. Below are a few examples:

	a$ = “?>%”
	b$ = “Your spaceship has been destroyed”	
	c$ = “That costs $12.50”
	d$ = ““		 rem *** An empty string ***

3.14

d#

d# = 3.14 e# = 1.9

e#

1.9

Complete
value stored

FIG-3.4

Real Variables

Liz Heronplayer$ = “Liz Heron”

Everything
between the

quotes...

...is
stored in the

variable

player$FIG-3.5

String Variables

Hands On AGK BASIC: Data� 67

Using Meaningful Names

It is important that you use meaningful names for your variables when you write a
program. This helps you remember what a variable is being used for when you go
back and look at your program a month or two after you wrote it. So, rather than write
statements such as

	a = 3	
	b = 120
	c = 2000

a better set of statements would be

	lives = 3
	points = 120
	timeremaining = 2000

which give a much clearer indication of the purpose of the variables.

Naming Rules

AGK BASIC, like all other programming languages, demands that you follow a few
rules when you make up a variable name. These rules are:

± The name should start with a letter.

± Subsequent characters in the name can be a letter, number, or underscore.

± The final character can be a # (needed when creating real variables) or $
(needed when creating string variables).

± Upper or lower case letters can be used, but such differences are ignored.
Hence, the terms total and TOTAL refer to the same variable.

± The name cannot be an AGK BASIC keyword.

This means that variable names such as

	a,	bc, de_2, fgh$, iJKlmnp#

are valid, while names such as

	2a, time-remaining

are invalid.

The most common mistake people make is to have a space in their variable names
(e.g. fuel level). This is not allowed. As a valid alternative, you can replace the space
with an underscore (fuel_level) or join the words together (fuellevel). Using capital
letters for the joined words is also popular (FuelLevel).

A keyword is any term
that is used as part
of the language. For
example,
if, then, for, repeat,
etc.

2a - cannot start with a
numeric digit.

time-remaining -
hyphen not allowed.

Activity 3.3

Which of the following are valid AGK BASIC statements that will store the
specified value in the named variable?	

a) a = 6 			 b) b = 12.89 			 c) c = “Hello”
d) d$ = 5			 e) e$ = ‘Goodbye’			 f) f# = -12.5

68� Hands On AGK BASIC: Data

Note that the names no, no# and no$ represent three different variables; one designed
to hold an integer value (no), one a real value (no#) and the last a string (no$).

Named Constants
We have already seen that assigning meaningful names to the variables used in a
program aids readability. When a program uses a fixed value which has an important
role within the program (for example, perhaps the value 1000 is the score a player
must achieve to win a game), then we have the option of assigning a name to that
value using the #constant statement. The format of the #constant statement is
shown in FIG-3.6.

where:

	 name		 is the name to be assigned to the constant value. A common
			 convention is to assign an uppercase name making it easy to
			 distinguish between variable names and constant names.

	 value		 is the constant value being named.

For example, the value 1000 can be assigned the name WINNINGSCORE using the
line:

	#constant WINNINGSCORE = 1000

Since the equal sign (=) is optional, it is also valid to write:

	#constant WINNINGSCORE 1000

Real and string constants can also be named, but the names assigned must NOT end
with # or $ symbols. Therefore the following lines are valid:

	#constant PASSWORD = "neno"
	#constant PI 3.14159

The value assigned to a name cannot be changed, so having written

	 #constant WINNINGSCORE = 1000

it is not valid to try to assign a new value later in the program with a line such as:

	WINNINGSCORE = 1900

The two main reasons for using named constants in a program are:

	 1)	 Aiding the readability of the program. For example, it is easier to

Activity 3.4

Which of the following are invalid variable names:	

a) x 				 b) 5				 c) “total”
d) al2$ 			 e) total score			 f) ts#o	 			
g) then			 h) G2_F3

FIG-3.6

#constant

#constant value[]=name

Hands On AGK BASIC: Data� 69

 		 understand the meaning of the line

				 if playerscore >= WINNINGSCORE

		 than

				 if playerscore >= 1000

	 2)	 If the same constant value is used in several places throughout a
 		 program, it is easier to change its value if it is defined as a named
 		 constant. For example, if, when writing a second version of a game we
 		 decide that the winning score has to be changed from 1000 to 2000,
 		 then we need only change the line

	 			 #constant WINNINGSCORE = 1000

		 to

				 #constant WINNINGSCORE = 2000

		 On the other hand, if we’ve used lines such as

				 if playerscore >= 1000

		 throughout our program, every one of those lines will have to be
 		 modified so that the value within them is changed from 1000 to 2000.

Summary
± Fixed values are known as constants.

± There are three types of constants: integer, real and string.

± String constants are always enclosed in double quotes.

± The double quotes are not part of the string constant.

± A variable is a space within the computer’s memory where a value can be
stored.

± Every variable must have a name.

± A variable’s name determines which type of value it may hold.

± Variables that end with the # symbol can hold real values.

± Variables that end with the $ symbol can hold string values.

± Other variables hold integer values.

± The name given to a variable should reflect the value held in that variable.

± When naming a variable the following rules apply:

	 The name must start with a letter.
	 Subsequent characters in the name can be numeric, alphabetic or the 		
		 underscore character.
	 The name may end with a # or $ symbol.
	 The name must not be an AGK BASIC keyword.

± Constants can also be assigned a name.

±Names used for constants cannot end with $ or #.

70� Hands On AGK BASIC: Data

Allocating Values to Variables

Introduction
There are several ways to place a value in a variable. Some of the AGK BASIC
statements available to achieve this are described below.

The Assignment Statement
In the last few pages we’ve used AGK BASIC’s assignment statement to store a value
in a variable. This statement allows the programmer to place a specific value in a
variable, or to store the result of some calculation.

The assignment statement has the form shown in FIG-3.7.

The value copied into the variable may be one of the following:

± a constant

± the contents of another variable

± the result of an arithmetic expression

Examples of each are shown below.

Assigning a Constant

This is the type of assignment we’ve seen earlier, with examples such as

	name$ = “Liz Heron”

where a fixed value (a constant) is copied into the variable. As a general rule, make
sure that the value being assigned is of the same data type as the variable. However,
an integer value may be copied into a real variable, as in the line:

	result# = 33

The program deals with this by storing the value assigned to result# as 33.0.

If you try copying a real value to an integer variable, the real value will be rounded
to the nearest integer and that value stored in the variable. Hence, the line

	number = 33.5

will result in the value 34 being stored in number (value rounded up), while the
assignment

	result = 12.2

=variable valueFIG-3.7

The Assignment
Statement

Activity 3.5

What are the minimum changes required to make the following statements
operate correctly?

a)	 desc = “tail”			 b)	 result = 12.34

Hands On AGK BASIC: Data� 71

will store 12 in result (value rounded down).

Copying Another Variable’s Value

Once we’ve assigned a value to a variable in a statement such as

	no1 = 12

we can copy the contents of that variable into another variable with a line such as:

	no2 = no1

The effect of these two statements is shown in FIG-3.8.

When the assignment is complete, both variables will contain the value 12. As
before, you must normally make sure the two variables are of the same type, although
the contents of an integer variable may be copied to a real variable as in the line:

	ans# = no1

Copying the contents of a real variable to an integer variable will cause rounding to
the nearest integer. For example,

	ans# = -12.94	
	no1 = ans#

will store -13 in no1.

The first statement sets up a variable
called no1 and assigns it the value 12.

The second statement sets up a
variable called no2 and assigns it a
copy of the value held in no1.

no1 = 12

12

no1 no1 no2

12 12

no2 = no1

FIG-3.8

Copying from
Another Variable

Activity 3.6

Assuming a program starts with the lines:	

	 no1 = 23
	 weight# = 125.8
	 description$ = “sword”

which of the following instructions would be invalid?

a) no2 = no1 	 b) no3 = weight# 		 c) result = description$	
d) ans# = no1	 e) abc$ = weight# 		 f) m# = description$

72� Hands On AGK BASIC: Data

Assigning the Result of an Arithmetic Expression
Another variation for the assignment statement is to have it perform a calculation and
then store the result of that calculation in the named variable. Hence, we might write

	no1 = 7 + 3

which would store the value 10 in the variable no1.

The example shows the use of the addition operator, but there are 6 possible operators
that may be used when performing a calculation. These are shown in FIG-3.9.

You should already be familiar with most of these operators. For example, if a
program begins with the statements

	no1 = 12
	no2 = 3

and then contains the line

	total = no1 - no2

then the variable total will contain the value 9, while the line

	product = no1 * no2

stores the value 36 in the variable product.

The remainder operator (mod) is used to find the integer remainder after dividing one
integer into another. For example,

	ans = 9 mod 5

assigns the value 4 to the variable ans since 5 divides into 9 once with a remainder
of 4. Other examples are given below:

	 6 mod 3 		 gives 0
	 7 mod 9 		 gives 7
	 123 mod 10 		 gives 3

If the first value is negative, then any remainder is also negative:

	 -11 mod 3 		 gives -2

Operator Example
+

mod
^

addition
subtraction
multiplication

remainder

*
-

Function

power

no1 = no2 + 5
no1 = no2 - 9
ans = no1 * no2
r1# = n01/ 2.0
ans = no2 mod 3

/ division

ans = 2^3

FIG-3.9

Arithmetic
Operators

Activity 3.7

What is the result of the following calculations:	

a) 12 mod 5 		 b) -7 mod 2 		 c) 5 mod 11	 	 d) -12 mod -8

Hands On AGK BASIC: Data� 73

The power operator (^) allows us to perform a calculation of the form xy. For
example, a 24-bit address bus on the microprocessor of your computer allows 224

memory addresses. We could calculate this number with the statement:

	addresses = 2^24

Most of the results produced by these operators are easy to calculate manually as long
as you are capable of basic arithmetic. However, the results of some statements are
not quite so obvious. For example, you might expect the line

	ans# = 19/4

to store the value 4.75 in ans#. In fact, the value stored will be 4.0. This is because
the division operator always returns an integer result if the two values involved are
both integer. On the other hand, if we write

	ans# = 19/4.0

and thereby use a real value in the calculation, then the result stored in ans# will be
the expected 4.75.

When using the division operator, a situation that you must guard against is division
by zero. In mathematics, dividing any number by zero gives an undefined result, so
most programming languages get quite upset if you try to get them to perform such
a calculation. AGK BASIC, on the other hand, will, when presented with a line such
as

	ans = 10/0

store the value 0 in ans.

You might be tempted to think that you would never write such a statement, but a
more likely scenario is that your program contains a line such as

	ans = no1 / no2

and if no2 contains the value zero, attempting to execute the line will still cause a
value of zero to be stored in ans.

Some statements may not appear to make sense if you are used to traditional algebra.
For example, what is the meaning of a line such as

	no1 = no1 + 3

In fact, it means add 3 to no1. We can take the literal meaning of the statement to be:

	 Take the value currently stored in no1, add 3, and store the result back in no1.

Another unusual assignment statement is of the form:

 	no1 = -no1

The effect of this statement is to change the sign of the value held in no1. For example,
if no1 contained the value 12, the above statement would change that value to -12.
Alternatively, if no1 started off containing the value -12, the above statement would
change no1’s contents to 12.

ËË An address bus is
a connection between
the microprocessor
and the memory.
The address of the
memory location
to be accessed is
transmitted along this
bus.

74� Hands On AGK BASIC: Data

The inc and dec Statements

Because adding to or subtracting from the existing value in a variable is so common,
AGK BASIC has added statements specifically to perform those tasks.

The inc statement (short for increment) allows you to add 1 or any other value to the
current contents of a variable. So rather than write

	no1 = no1 + 1

we can write

	inc no1

and in place of

	num = num + 7

we can write

	inc num, 7

Note that no value needs to be given when 1 is being added but for any other value
the amount must be included in the statement

When subtracting, we can use the dec statement (short for decrement) in the same
way:

	dec x			 rem *** subtract 1 from x ***
	dec y, 3		 rem *** subtract 3 from y ***

So why offer two ways to achieve the same thing? Using inc and dec allows the
compiler to create more efficient code than is possible when using the standard
assignment approach.

The format for the inc statement is shown in FIG-3.10.

where:

	 variable	 is the variable whose value is to be incremented.

	 value 		 is a numeric value giving the amount to be added to the variable.
			 If value is omitted then 1 is added to the variable.

FIG-3.10

The inc Statement
inc variable , value[]

Activity 3.8

Assuming a program starts with the lines:	
	 no1 = 2
	 v# = 41.09
what will be the result of the following instructions?	

a) no2 = no1^4 		 b) x# = v#*2 		 c) no3 = no1/5
d) no4 = no1 + 7	 	 e) m# = no1/5 	 f) v2# = v# - 0.1
g) no1 = no1 + 1		 h) no5 = -no1		

Treat each statement
separately - don’t
assume the results are
cumulative.

Hands On AGK BASIC: Data� 75

The format for the dec statement is given in FIG-3.11.

where:

	 variable	 is the variable whose value is to be decremented.

	 value 		 is a numeric value giving the amount to be subtracted from the
			 variable.

Operator Precedence

Of course, an arithmetic expression may have several parts to it as in the line

	answer = no1 - 3 / v# * 2

and how the final result of such lines is calculated is determined by operator
precedence.

If we have a complex arithmetic expression such as

	answer = 12 + 18 / 3^2 - 6

then there’s a potential problem about what should be done first when calculating the
value of the expression. Will we start by adding 12 and 18 or subtracting 6 from 2,
raising 3 to the power 2, or even dividing 18 by 3?

In fact, calculations are done in a very specific order according to a fixed set of rules.
The rules are that the power operation (^) is always done first. After that comes
remainder, multiplication and division with addition and subtraction done last. The
power operator (^) is said to have a higher priority than remainder, multiplication
and division; they in turn having a higher priority than addition and subtraction. So,
to calculate the result of the statement above, the computer begins by performing the
calculation 3^2 which leaves us with:

 	answer = 12 + 18 / 9 - 6

Next the division operation is performed (18/9) giving:

	answer = 12 + 2 - 6

The remaining operators, + and -, because they have the same priority, are performed
on a left-to-right basis, meaning that we next calculate 12+2 giving:

	answer = 14 - 6

Finally, the last calculation (14 - 6) is performed leaving

	answer = 8

and the value 8 is stored in the variable answer.

FIG-3.11

The dec Statement
dec variable , value[]

When an expression
contains more than one
operator from the group
multiplication, division,
and remainder, these
are also performed on a
left-to-right basis.

Activity 3.9

What is the result of the calculation 12 - 5 * 12 / 10 - 5 ?

76� Hands On AGK BASIC: Data

Using Parentheses

If we need to change the order in which calculations within an expression are
performed, we can use parentheses. Expressions in parentheses are always done first.
Therefore, if we write

	answer = (12 + 18) / 9 - 6

then 12+18 will be calculated first, leaving:

	answer = 30 / 9 - 6

The next calculation is 30 / 9 :

	answer = 3 - 6	
	answer = -3

An arithmetic expression can contain many sets of parentheses. Normally, the
computer calculates the value in the parentheses by starting with the left-most set.

If sets of parentheses are placed inside one another (this is known as nested
parentheses), then the contents of the inner-most set is calculated first. Hence, in the
expression

	12 / (3 * (10 - 6) + 4)

the calculations are performed as follows:

	 (10 - 6) 	 giving		 12 / (3*4+4)	
	 3 * 4		 giving		 12 / (12 + 4)	
	 12 + 4	 giving		 12 / 16	
	 12 / 16	 giving		 0

The order of precedence for all arithmetic operators is shown in FIG-3.12.

ËË Remember we
are dividing two
integers so we get
an integer result: 3.

Activity 3.10

Show the steps involved in calculating the result of the expression

 	 8 * (6-2) / (3-1)

FIG-3.12

Operator Priority

Operators of
equal priority are
performed on a left-
to-right basis.

Operator Priority
()

+
-

parentheses

multiplication
division

addition

/
*

Description

subtraction

1
2

3
3
4

mod remainder

4

^ power
3

Activity 3.11

Assuming a program begins with the lines	 no1 = 12, no2 = 3, and 	no3 = 5
what would be the value stored in answer as a result of the line
	
	 answer = no1/(4 + no2 - 1)*5 - no3^2

Hands On AGK BASIC: Data� 77

Variable Range

When first learning to program, a favourite pastime of the beginner is to see how
large a number the computer can handle, so people write lines such as:

	no1 = 123456789000

They are often disappointed when the running program stops unexpectedly at this
point.

There is a limit to the value that can be stored in a variable. That limit is determined
by how much memory is allocated to a variable, and that differs from language to
language.

Integer values in AGK BASIC can be in the range -2,147,483,648 to +2,147,483,647
while real values can be stored to about 7 decimal places.

String Operations

The + operator can also be used on string values to join them together. For example,
if we write

	a$ = “to” + “get”

then the value toget is stored in variable a$. If we then continue with the line

	b$ = a$ + “her”

b$ will contain the value together, a result obtained by joining the contents of a$ to
the string constant “her”.

The Print() Statement Again
We’ve already seen that Print() (in combination with Sync()) can be used to display
values on the screen using lines such as:

	Print(1)
	Print(“Hello”)
 Sync()

We can also get the Print() statement to display the answer to a calculation. Hence,

	Print(7+3)

will display the value 10 on the screen, while the statement

	Print(“Hello ” + “again”) rem ***Note the space after the o***

displays

	 Hello again

ËË When a program
stops unexpectedly
because of some error
situation, this is known
as a runtime error.

Activity 3.12

What value will be stored as a result of the statement	

	 term$ = “abc”+”123”+”xyz”

78� Hands On AGK BASIC: Data

The Print() statement can also be used to display the value held within a variable.
This means that if we follow the statement

	number = 23

by the lines

	Print(number)
	Sync()

our program will display the value 23 on the screen, this being the value held in
number. Real and string variables can be displayed in the same way. Hence the lines

	name$ = “Charlotte”	
	weight# = 95.3
	Print(name$)
	Print(weight#)
	Sync()
	do
	loop

will produce the output

	 Charlotte	
	 95.3

Making Use of PrintC()

Although the Print() statement cannot display more than one value at a time, by
using PrintC(), we can display two or more values on the same line of the screen.

For example, the code

	capital$ = “Washington DC”	
	PrintC(“The capital of the USA is ”)
	Print(capital$)
	Sync()
	do
	loop

produces the following output on the screen:

	 The capital of the USA is Washington DC

Activity 3.13

A program contains the following lines of code:	

	 number = 23
	 Print(“number”)
	 Print(number)
	 Sync()

What output will be produced by the two Print() statements?

ËË The second
output statement
uses Print() in
order to move the
cursor to a new line
after all output is
complete.

Remember to
close your old
project.

Hands On AGK BASIC: Data� 79

Another way to output a sequence of strings, this time using only a single Print()
statement, is to join those strings together so only one data value is being output:

	Print(“Hello, “ + name$ + ”, how are you today?”)

Acquiring Data
Data input can come in many forms: mouse, joystick, screen press, and keyboard are
perhaps the obvious ones. AGK allows all of these and we’ll be looking at each of
those methods later in the book.

Another way to retrieve information is to access the hardware’s timer. AGK offers
several timer-related statements. One gives you access to the time your program has
been running to the nearest second, another gives the same information but this time
to the nearest one thousandth of a second.

Timer()

Many of the statements we have looked at so far require you to supply them with
information. For example, you have to supply Print() with the information you
want displayed, while SetClearColor() requires the strength of the red, green and
blue components that make up the background colour you want to use. Values
supplied to commands of this type are known as in parameters.

The Timer() statement, on the other hand, supplies you with information - the time
your program has been running. When a command supplies you with a value, that
value is known as a return value.

Syntax diagrams for commands that return a value have the format shown in FIG-
3.13.

Notice that return type is not enclosed. That is because the return type is information
about the type of value returned by the command, but not part of how the command
is written.

The syntax diagram for the Timer() statement is shown in FIG-3.14.

Activity 3.15

Modify Name so that it uses a single Print() statement to perform all its
output. Test and save the modified code.

FIG-3.13

Statements that
Return a Value

Command Name ()in parametersreturn type

FIG-3.14

Timer() Timer ()float

Activity 3.14

Start a new project called Name that sets the contents of the variable name$ to
Jaqueline McKinnon and then uses output statements that display the contents
of name$ in such a way that the final message on the screen becomes:	
	 Hello, Jaqueline McKinnon, how are you today?

80� Hands On AGK BASIC: Data

The diagram tells use that the Timer() statement returns a real value (also known as
a float value) and that no in parameters are required by the statement. Notice that the
parentheses must be included in the statement even though no information is placed
within them. The actual value returned by Timer() is the time your program has been
running to the nearest millisecond.

When a statement returns a value (as is the case with Timer()), generally we will
want to do something with that returned value. Perhaps the most obvious thing to do
is to store the result in a variable. Hence, we could add the line:

	time_elapsed# = Timer()

We could then use that value in a calculation, for example

	minutes = time_elapsed#/60

or simply display the value on the screen:

	Print(time_elapsed#)

The value returned by a statement doesn’t have to be assigned to a variable. In the
last exercise we assigned the value returned by Timer() to a variable then displayed
the contents of that variable on the screen, but we can bypass the need for the variable
by just printing the returned value directly with the line

	Print(Timer())

which executes the Timer() statement then displays the value returned.

Activity 3.16

Start a new project called Time. Change the code in main.agc to read:
	 rem *** Get time passed ***
	 time_elapsed# = Timer()
 	 rem *** Display time ***
	 PrintC(“Time elapsed : “)
 	 Print(time_elapsed#)
	 Sync()
	 do
	 loop

Compile and run the program.

You should see the time taken since the program started until the Timer()
command was executed. This should be much less than 1 second.

Modify your program by moving the first six lines so they are positioned
between do and loop. Remember to change the indentation of the moved lines.

Compile and run the program. How does the output differ from the first version
of the program?

Activity 3.17

Modify Time so that the variable time_elapsed# is not required.

Test your modified program.

Hands On AGK BASIC: Data� 81

About Sync()

Let’s take a moment out to get a deeper understanding of how Sync() works.

What you see on the screen at any one instant is known as a frame. Every time a
Sync() statement is executed a new frame is displayed on the screen. AGK reserves
two areas of memory to handle the screen display. The first area holds the image
currently displayed on the screen and is known as the front buffer. The second area
holds the image of the next screen frame to be displayed and is known as the back
buffer.

When a Print() or PrintC() statement is executed, the text to be displayed is copied
into the back buffer. When a Sync() statement is executed, the two areas of memory
swap function: what was the back buffer, becomes the front buffer and its contents
appear on the screen; what was the front buffer becomes the new back buffer and its
contents are cleared.

Understanding this will give you some insight as to where Print() and PrintC()
statements need to be positioned within your program. Let’s see how moving one of
those statements affects the display of the Time project.

So, why does the message no longer appear when we move it before the do statement?
In fact, the message does appear, but it is gone so quickly that you won’t have time
to see it. After that, only the time appears.

FIG-3.15 explains the process involved when the first PrintC() statement appears
before the do.

Activity 3.18

Since the message Time elapsed : never changes, try moving its PrintC()
statement back to its original position before do, then re-run your program.

What difference does this make to what is displayed?

After performing this, test, return the PrintC() statement to its original
position after the do statement.

There is no need to resave your program.

FIG-3.15

How Sync() Operates Let’s start by looking at the code being

executed.
As the program begins running, the
PrintC() and Print() statements are
executed.

PrintC("Time elapsed : ")
do
 Print(Timer())
 Sync()
loop

PrintC("Time elapsed : ")
do
 Print(Timer())
 Sync()
loop Executed

statements

82� Hands On AGK BASIC: Data

The overall effect is that only values printed between one execution of Sync() and
the next execution of Sync() will appear on the screen. If you want text to stay on
the screen you need to reprint it between each execution of Sync().

Timing Again

Most people are happier seeing a short period of time displayed in minutes and
seconds rather than just seconds. To achieve this we can start by rounding the time
elapsed to the nearest second using the line

	total_seconds = Timer()

The number of minutes elapsed can now be calculated as total_seconds divided by
60:

	minutes = total_seconds / 60

The remaining seconds (those not converted to minutes) give us the seconds part of
our time. This is calculated as

	seconds = total_seconds mod 60

The final version of our program is shown in FIG-3.16.

ËË Remember,
moving a real value
to an integer variable
causes that value to
be rounded to the
nearest integer.

ËË Remember, mod
gives you the integer
remainder after
division has taken
place.

When the program returns to the start
of the loop, the Print() statement
causes new details to be sent to the
backbuffer.

The next execution of Sync(), clears
the current contents of the screen and
outputs the new details, and clears the
backbuffer.

0.126945

Data
waiting to be

output

The screen
is cleared...

0.126945

0.126945

...then the
backbuffer
data is copied
to the screen
before being
deleted from
the backbuffer.

The program builds up details of what
is waiting to be displayed in the
backbuffer.

Executing Sync() clears the screen;
the contents of the backbuffer are
transfered to the screen; and the
backbuffer is cleared.

Time elapsed : 0.124513

Data
waiting to be

output

Time elapsed : 0.124513

Time elapsed : 0.124513

Data
transferred to

screen...

Data in
the buffer is deleted

Backbu�er

FIG-3.15
(continued)

How Sync() Operates

Hands On AGK BASIC: Data� 83

ResetTimer()

Although the timer automatically starts tracking time from the moment your program
begins executing, you can reset that timer to zero using the ResetTimer() statement
(see FIG-3.17).

Notice that this statement has neither in parameters nor a return value, instead it
modifies the contents of a variable maintained by AGK itself.

GetMilliSeconds()

While Timer() returns the time elapsed since the start of the program (or since the
last execution of ResetTimer()) in seconds, you can have that same value in
milliseconds by using the GetMilliSeconds() statement (see FIG-3.18).

GetSeconds()

If you are only interested in the time elapsed to the nearest second, you can use the
GetSeconds() statement rather than Timer(). GetSeconds() has the format shown
in FIG-3.19.

FIG-3.17

ResetTimer()

ResetTimer ()

FIG-3.18

GetMilliSeconds()

GetMilliSeconds ()integer

Activity 3.20

Modify Time to use GetSeconds() instead of Timer(). Test your new code.

FIG-3.19

GetSeconds()

()integer GetSeconds

Activity 3.19

Modify your Time program to match the code given in FIG-3.16.

Compile and test your code.

rem *** Display time elapsed in ***
rem *** minutes and seconds ***

do
 rem *** Get time elapsed to nearest second ***
 total_seconds = Timer()
 rem *** Convert to minutes and seconds ***
 minutes = total_seconds / 60
 seconds = total_seconds mod 60
 rem *** Display the result ***
 PrintC(“Time elapsed : “)
 PrintC(minutes)
 PrintC(“:”)
 Print(seconds)
 Sync()
loop

FIG-3.16

Displaying Time
Elapsed in Minutes
and Seconds

84� Hands On AGK BASIC: Data

Sleep()
It is possible to get a program to do nothing for a set period of time. As a general rule
this is undesirable in a highly animated, interactive game, but for simple games such
as those we will create in the early chapters of this book, getting a program to stop or
slow down can be of use to us. For example, it may be used to give us the time to read
a message on the screen.

Halting a program for a specific time is achieved using the Sleep() statement (see
FIG-3.20).

where:

	 imillisecs	 is an integer value giving the time in milliseconds for which the
			 program execution is to halt.

Generating Random Numbers

Often in a game we need to throw a dice, choose a card or think of a number. All of
these are random events. That is to say, we cannot predict what value will be thrown
on the dice, what card will be chosen, or what number some other person will think
of.

To help emulate these type of situations AGK BASIC offers several statements for
the generation and manipulation of random values.

Random()

The Random() statement is used to generate a random number between lower and
upper limits (see FIG-3.21).

where

	 ifrom		 is an integer value giving the lowest value allowed.

	 ito		 is an integer value giving the highest value allowed.

FIG-3.20

Sleep() Sleep ()imillisecs

Activity 3.21

Modify your Time program adding the line

	 Sleep(2000) 	 rem *** halt for 2 seconds ***

immediately after the line containing do.

Run the program. How has the new line affected the program?

FIG-3.21

Random() ()integer Random ifrom , ito[]

Hands On AGK BASIC: Data� 85

The statement returns a random integer value in the range ifrom to ito. For example,
if we wanted to simulate the throw of a dice, we could write

	dice_throw = Random(1,6)

which would store a random value between 1 and 6 in dice_throw.

Notice that the syntax diagram tells us the parameters may be omitted allowing us to
write a line such as:

	value = Random()

When no range of values is supplied, as in this example, the statement creates a
random number in the range 0 to 65,535.

The program in FIG-3.22 shows another use of the Random() statement to create a
random background colour for the app window.

FIG-3.22

Random Background
Colour

Activity 3.23

Start a new project (Background) and enter the code given in FIG-3.22.

What happens when you run the program?

Immediately after the Sync() statement, add the lines

	 rem *** wait for 0.5 seconds ***
	 Sleep(500)

which will get the program to pause for half a second after each screen update.
What difference does this make to the program?

rem *** Cycle through random background colours ***
do
 rem *** Generate a random value for each colour ***
 red = Random(0,255)
 green = Random(0,255)
 blue = Random(0,255)

 rem *** Clear the screen using the new colour ***
 SetClearColor(red,green,blue)
 Sync()
loop

Activity 3.22

Start a new project (Dice) and create code to perform the following logic:

	 Throw a six-sided dice
	 Display the value thrown

Test the program by running it several times.

Save and close the project. We will return to this project frequently through the
next few chapters.

86� Hands On AGK BASIC: Data

We have already seen that the value returned by a statement can be assigned to a
variable or displayed using a Print() statement, but we can also use the value
returned by one statement as the parameter to another directly, without using a
variable. Hence, we can replace the lines

	red = Random(0,255)
 	green = Random(0,255)
 	blue = Random(0,255)
	SetClearColor(red,green,blue)

with the line

	SetClearColor(Random(0,255),Random(0,255),Random(0,255))

SetRandomSeed()

Computers can’t really think of a random number all by themselves. Actually, they
cheat and use a mathematical algorithm to calculate an apparently random number.
As long as you don’t know that algorithm, you won’t be able to predict what number
the computer is going to come up with, but because the numbers generated are not
truly random, they are often referred to as pseudo random numbers.

The mathematical formula used needs to be supplied with an initial number to get
started. This is known as the seed value. This seed value determines exactly what set
of pseudo random numbers will be generated - use the same seed value on a second
occasion and exactly the same set of numbers will be generated. To prevent this
happening, the random number generator in AGK defaults to using the time from the
system clock as a seed value. This ensures that a different value is used each time a
program is run.

If you want to use your own seed value, you can do so using the SetRandomSeed()
statement. The most likely reason for doing this is to ensure you use the same seed
value on each run and hence the same set of random values. Normally, of course, you
wouldn’t want the same set of values, but it can be extremely useful when trying to
find mistakes in a program. The SetRandomSeed() has the syntax shown in FIG-3.23.

where:

	 iseed 		 is an integer value which is used as the start-up for the formula 	
			 used in the generation of pseudo random values.		

FIG-3.23

SetRandomSeed()

()SetRandomSeed iseed

Activity 3.25

Modify your Dice project so that the program starts by setting the seed value to
12.

Run the program three times and check that the same number is generated each
time. Remove the SetRandomSeed() line after testing is complete.

Activity 3.24

Modify your Background project eliminating the need for the red, green and
blue variables. Test your program to ensure it still works correctly.

Hands On AGK BASIC: Data� 87

RandomSign()

A final statement that makes use of a random value is RandomSign() (see FIG-3.24).

where:

	 ivalue		 is an integer value which will be returned as either its original
			 value or as a negated form of the original. In other words, if
			 ivalue was 12 then the returned value will be either 12 or -12.
			 Each return option has a 50% chance of occurring.

One possible use for such a statement is to emulate any situation with two possible
outcomes each with an equal possibility of occurring - for example, the flip of a coin.

User Input
For many games, the most important method of obtaining data is from the user. The
game player, will be moving a mouse, a joystick, tapping on the screen, or typing at
the keyboard. AGK has statements available for handling all of these (and more) but
at this stage using these statements are a bit beyond what we have learned. On the
other hand, being able to enter simple values is very useful when trying to demonstrate
some of the fundamental concepts in programming.

To allow us a simple way to enter integer values, two functions are included in the
download for this book. These functions are:

	 SetUpButtons()	 This function sets up 12 round buttons on the right of the
				 app window. The buttons are labelled 0 to 9, (backspace)
				 and (Enter).

	 GetButtonEntry()	 This function allows you to type in an integer value using
				 the 12 buttons. Pressing the backspace button will remove
				 the last character entered. Pressing Enter completes the
				 data entry and returns the value entered.

The screen displayed when the buttons are used is shown in FIG-3.25.

FIG-3.24

RandomSign()

()integer RandomSign ivalue

The term function may,
for the moment, be
taken to have the same
meaning as program
statement.

FIG-3.25

Buttons Layout

backspace

Enter

88� Hands On AGK BASIC: Data

The buttons are placed along the right edge to make them easy to press when the app
is being used on a handheld device. If you want to use these new functions in any of
your projects, you have to follow a few simple steps. These are shown in FIG-3.26.

FIG-3.26

Using the Buttons

Double-click on the Buttons.agc file... ...to add the selected file to the
Sources list in the Projects Panel.

Select
Buttons.agc

Buttons.agc
is now in the
Sources list

In main.agc, we need to add the line
 #include “Buttons.agc”
to allow the two functions held there to
be used.

Now we can use SetUpButtons() to
display the 12 buttons and
GetButtonEntry() to accept input.
The value is then displayed.

#include "Buttons.agc"

#include "Buttons.agc"

SetUpButtons()
value_entered = GetButtonEntry()
PrintC("You entered ")
Print(value_entered)
Sync()
do
loop

The PNG and TXT files are copied to
the project’s media folder. The AGC
file is copied to the project’s main
folder.

In the Projects Panel, right-click on
ButtonTest and select Add files from
the pop-up menu.

Right-click

Select
Add files

We start by creating a new project
(ButtonTest) in which to test the
button routines. Compiling the default
code creates a media subfolder.

The ZIP file download for Hands On
AGK contains a folder called Chapter3.
This folder contains 3 files.

Compile
to create media

folder Files in Chapter 3 folder

Hands On AGK BASIC: Data� 89

The complete code (with comments) for main.agc is shown in FIG-3.27.

The buttons are best suited to an app window optimised for the iPad’s resolution of
1024 pixels high by 768 pixels wide, so we need to change the appropriate lines
within the project’s setup.agc to:

	 width=768
	 height=1024

We will be making use of the button input code in a few programs. The process for
using the code is always the same:

	 Copy the three files to the project’s folders
	 Add a #include statement to the start of main.agc
	 Call the functions as required by the program logic
	 Modify the dimensions specified in setup.agc

FIG-3.27

Button Input

rem *** Command to include other source files used ***
#include “Buttons.agc”

rem *** Display the buttons ***
SetUpButtons()
rem *** Get an integer value from the buttons ***
value_entered = GetButtonEntry()
rem *** Display the value entered ***
PrintC(“You entered “)
Print(value_entered)
Sync()
do
loop

Activity 3.26

Start a new project called TestButtons.

Compile the project in order to create the media subfolder.

From the Chapter 3 folder of the files you downloaded for Hands On AGK,
copy Buttons.png and Buttons subtext.txt into the TestButtons project’s media
folder.

From the Chapter 3 folder copy Buttons.agc into the project’s main folder.

Modify the contents of the project’s main.agc so that the code matches that
given in FIG-3.27.

Modify setup.agc so that the width is set to 768 and the height to 1024.

Compile and run the program, checking that you can enter and delete
characters using the buttons.

Check that the number displayed when you press the Enter key matches the
value you typed in.

Save and close your project.

90� Hands On AGK BASIC: Data

Summary
± The assignment statement takes the form

		 variable = value

	 value can be a constant, other variable, or an expression.

±	The value assigned should be of the same type as the receiving variable.

±	Arithmetic expressions can use the following operators:

		 ^ mod * / + -

± Calculations are performed on the basis of highest priority operator first and a
left-to-right basis.

± The power operator has the highest priority; multiplication and division and
the remainder operator the next highest, followed by addition and subtraction.

± Terms enclosed in parentheses are always performed first.

± The + operator can be used to join strings.

±	Use inc and dec to increment or decrement variables.

±	Each time Sync() is executed a new screen frame is created.

±	The current screen frame is held in the front buffer, the next frame in the back
buffer.

±	Use Timer(), ResetTimer(), GetSeconds() and GetMilliSeconds() to access
how long a program has been running.

±	Use Sleep() to get a program to pause for a specified number of milliseconds.

± Use RandomSeed(), Random() and RandomSign() to generate random integer
values.

Activity 3.27

Reload your Dice program.

Make the necessary adjustments to allow you to use button input in the
program.

Modify the logic of main.agc to match the following structured English
description:

	 Display the set of input buttons
	 Generate a random number between 0 and 9
	 Display “Guess what my number is”
	 Get a value entered on the buttons
	 Display “My number was “ and the game’s number
	 Display “Your guess was “ and the value entered

The last two displays should appear on screen at the same time.

Compile and check your program by running it three times. Resave your
project.

Hands On AGK BASIC: Data� 91

Testing Sequential Code
The programs in this chapter are very simple ones, with the statements being executed
one after the other, starting with the first and ending with the last. In other words, the
programs are sequential in structure.

Every program we write needs to be tested. For a simple sequential program which
accepts user input, the minimum testing involves thinking of a value to be entered,
predicting what result this value should produce, and then running the program to
check that we do indeed obtain the expected result from that test data.

The program below (see FIG-3.28) reads in a value from the buttons and displays the
square root of that number.

To test this program we might decide to enter the value 16 with the expectation of the
displayed result being 4.

FIG-3.28

Calculating the
Square Root

#include “Buttons.agc”

rem *** Display buttons ***
SetUpButtons()
rem *** Display prompt ***
Print(“Enter a number : “)
Sync()
Sleep(2000)
rem *** Get value ***
no = GetButtonEntry()
rem *** Calculate square root ***
sqroot# = no^0.5
rem *** Display result ***
PrintC(“Square root of “)
PrintC(no)
PrintC(“ is “)
Print(sqroot#)
Sync()
do
loop

Activity 3.28

Start a new project called SquareRoot.

Perform the operations necessary so you can make use of button input in the
program. Set the app windows dimensions to 1024 x 768.

Recode main.agc to match the lines given in FIG-3.28.

Compile the program but do not run it.

Activity 3.29

Test SquareRoot using the value 16.

Did you achieve the expected result?

92� Hands On AGK BASIC: Data

Perhaps that one test would seem sufficient to say that the program is functioning
correctly. However, a more cautious person might try a few more values just to make
sure. But what values should be chosen? Should we try 25 or 9, 3 or 7?

As a general rule it is best to think carefully about what values you choose as test
data. A few carefully chosen values may show up problems when many more
randomly chosen values show nothing.

When the test data involves numeric values only, perhaps the most obvious categories
are positive numbers, negative numbers and zero (which is neither negative or
positive).

We have already tried a positive number (16), so perhaps we should try -9, say, and,
of course, zero.

But in each case it is important that you work out the expected result before entering
your test data into the program - otherwise you have no way of knowing if the results
you are seeing on the screen are correct.

When the value being entered by the user is a string, perhaps the test data could be:

	 a string with zero characters (just press the Enter when asked for data)
	 a string with only a single character
	 a string containing multiple characters

Of course, these suggestions for creating test data will almost certainly need to be
modified depending on the nature of the program you are testing.

Activity 3.30

What results would you expect from SquareRoot if your test data was
	 0	 and 	 -9

Run the program with these test values and check that the expected results are
produced.

Hands On AGK BASIC: Data� 93

Solutions
Activity 3.1

a) Integer	 b) String		 c) Integer	 d) Real	
e) String	 f) Integer	 g) Real		 h) String		
i) String 	 j) Real

Activity 3.2
a)	 -12		 integer constant
b)	 Elizabeth	 string constant
c)	 3.14		 real constant
d)	 27.0		 real constant

Activity 3.3
a) Valid 	
b) Invalid. Stores 13	
c) Invalid - not a string variable
d) Invalid - remove $ from variable name or put double
quotes round the 5.
e)Invalid. Must be double quotes, not single quotes.
f) Valid.

Activity 3.4
a) 	 Valid
b) 	 Invalid. Must start with a letter
c) 	 Invalid. Names cannot be within quotes.
d) 	 Valid
e) 	 Invalid. Spaces are not allowed in a name
f) 	 Invalid. # must appear at the end of the name
g) 	 Invalid, then is a BASIC keyword
h) 	 Valid

Activity 3.5
a)	 desc$=”tall”
b) 	 result#= 12.34

Activity 3.6
a) 	 Valid
b) 	 Invalid. Fraction part rounded
c) 	 Invalid. A string cannot be copied to an integer 	
	 variable
d) 	 Valid
e) 	 Invalid. A real cannot be copied to a string variable
f) 	 Invalid. A string cannot be copied to a real variable

Activity 3.7
a) 	 2
b) 	 -1
c) 	 5
d) 	 -4

Activity 3.8
a) 	 no2 is 16
b) 	 x# is 82.18
c) 	 no3 is zero
d) 	 no4 is 9
e) 	 m# is 0.0
f) 	 v2# is 40.99
g)	 no1 is 3
h)	 no5 is -2

Activity 3.9
The result is 1
The expression is calculated as follows:
	 12-5* 12/10-5
	 12-60/10-5
	 12-6-5
	 6-5
	 1

Activity 3.10
Steps:
	 8*(6-2)/(3-1)
	 8*4/(3-1)
	 8*4/2
	 32/2
	 16

Activity 3.11
answer = 	 no1 / (4 + no2 - 1) * 5 - no3 ^ 2
answer = 	 12 / (4 + 3 - 1) 	 * 5 - 5 ^ 2
answer = 	 12 / (7 - 1) 	 * 5 - 5 ^ 2
answer = 	 12 / 6 	 * 5 - 5 ^ 2
answer = 	 12 / 6 		 * 5 - 25
answer = 	 2 		 * 5 - 25
answer = 	 10 		 - 25
answer = 	 -15

Activity 3.12
term$ will hold the string abcl23xyz

Activity 3.13
Output:
	 number		
	 23

Activity 3.14
The program code:

name$ = “Jaqueline McKinnon”
PrintC(“Hello, “)
PrintC(name$)
Print(“, how are you today?”)
Sync()
do
loop

Note the spaces inside the quotes to make sure there are gaps
either side of the name.

Activity 3.15
The program code:

name$ = “Jaqueline McKinnon”
Print(“Hello, “+name$+”, how are you today?”)
Sync()
do
loop

Activity 3.16
Modified code:

do
 rem *** Get time passed ***
 time_elapsed# = Timer()
 rem *** Display time ***
 PrintC(“Time elapsed : “)
 Print(time_elapsed#)
 Sync()
loop

94� Hands On AGK BASIC: Data

The time displayed on the screen now updates continuously.

Activity 3.17
Modified code:

do
 rem *** Display time passed ***
 PrintC(“Time elapsed : “)
 Print(Timer())
 Sync()
loop

Activity 3.18
Modified code:

PrintC(“Time elapsed : “)
do
 rem *** Display time passed ***
 Print(Timer())
 Sync()
loop

Each time the Sync() statement is executed, only the
contents of Print() or PrintC() statements executed since
the previous execution of Sync() are displayed. Since the
PrintC() statement above is executed only once, its message
disappears the second time the Sync() statement is executed.

Activity 3.19
No solution required.

Activity 3.20
Modified code:

rem *** Display time elapsed in ***
rem *** minutes and seconds ***
do
 rem *** Get time elapsed to nearest second ***
 total_seconds = GetSeconds()
 rem *** Convert to minutes and seconds ***
 minutes = total_seconds / 60
 seconds = total_seconds mod 60
 rem *** Display the result ***
 PrintC(“Time elapsed : “)
 PrintC(minutes)
 PrintC(“:”)
 Print(seconds)
 Sync()
loop

Activity 3.21
Modified code:

rem *** Display time elapsed in ***
rem *** minutes and seconds ***
do
	 Sleep(2000) rem *** halt for 2 seconds ***
 rem *** Get time elapsed to nearest second ***
 total_seconds = GetSeconds()
 rem *** Convert to minutes and seconds ***
 minutes = total_seconds / 60
 seconds = total_seconds mod 60
 rem *** Display the result ***
 PrintC(“Time elapsed : “)
 PrintC(minutes)
 PrintC(“:”)
 Print(seconds)
 Sync()
loop

The change means that the screen is only updated every 2
seconds so we see the time pass in 2 second steps.

Activity 3.22
Program code:

rem *** Dice program ***

rem *** Simulates the roll of a 6-sided dice ***
rem *** Throw dice ***
dice = Random(1,6)
rem *** Display value thrown ***
PrintC(“Value thrown was : “)
Print(dice)
Sync()
do

loop

Activity 3.23
The colours change so quickly that there is no to update the
whole background before the colour changes again, so bands
of colour appear.

Modified code:
rem *** Cycle through random background colours ***
do
 	rem *** Generate value for each colour ***
 	red = Random(0,255)
 	green = Random(0,255)
 	blue = Random(0,255)

 	rem Clear the screen using the new colour ***
 	SetClearColor(red,green,blue)
 	Sync()
		 rem *** wait for 0.5 seconds ***
 	Sleep(500)

loop

Now there is enough time to show the selected colour over
the whole background before another colour is generated.

Activity 3.24
Modified Code:

rem *** Cycle through random background colours ***
do
 rem Clear the screen using random colour ***
	 SetClearColor(Random(0,255),Random(0,255),
	 Random(0,255))
 Sync()
 rem *** wait for 0.5 seconds ***
 Sleep(500)
loop

Note The symbol  is used to indicate the continuation of a
single line of code.

Activity 3.25
Modified code:

rem *** Dice program ***
rem *** Simulates the roll of a 6-sided dice ***

rem *** Seed random number generator ***
SetRandomSeed(12)
rem *** Throw dice ***
dice = Random(1,6)
rem *** Display value thrown ***
PrintC(“Value thrown was : “)
Print(dice)
Sync()
do
loop

The program always generates a 6.

Activity 3.26
No solution required.

Activity 3.27
Reload your Dice project.
Modify the startup.agc file setting the width to 768 and the
height to 1024.
From the Chapter 3 folder of the files you downloaded for

Hands On AGK BASIC: Data� 95

Hands On AGK, copy Buttons.png and Buttons subtext.txt
into the project’s media folder.
From the Chapter 3 folder copy Buttons.agc into the project’s
main folder.

Right click on Dice in the Projects Panel.
Select Add files from the popup menu.
Select Buttons.agc from the files listed.

Program code:
rem *** Dice program ***
rem *** Simulates the roll of a 10-sided dice ***

rem *** include Buttons***
#include "Buttons.agc"

rem *** Display buttons ***
SetUpButtons()
rem *** Throw dice ***
dice = Random(0,9)
rem *** Display prompt ***
Print("Guess what my number is ")
Sync()
Sleep(2000)
rem *** Get a value ***
guess = GetButtonEntry()
rem *** Display values ***
PrintC("My number was : ")
Print(dice)
PrintC("Your guess was : ")
Print(guess)
Sync()
do
loop

Activity 3.28
Start a new project called SquareRoot.
Compile the project to create the media folder.
Modify the startup.agc file setting the width to 768 and the
height to 1024.
From the Chapter 3 folder of the files you downloaded for
Hands On AGK, copy Buttons.png and Buttons subtext.txt
into the project’s media folder.
From the Chapter 3 folder copy Buttons.agc into the project’s
main folder.

Right click on SquareRoot in the Projects Panel.
Select Add files from the popup menu.
Select Buttons.agc from the files listed.

Change the contents of main.agc to match that given in FIG-
3.24.
Compile the program.

Activity 3.29
Running the program using the value of 16 gives the result
4.0.

Activity 3.30
The expected result using the value zero would be zero.
Using -9 should result in an error since negative values do
not have a square root.

96� Hands On AGK BASIC: Data

Hands On AGK BASIC : Selection� 97

In this Chapter:

T if..endif Statement

T Conditions

T Relational Operators

T Boolean Operators

T if..then Statement

T Nested if Statements

T Testing Selection Structures

Selection

98� Hands On AGK BASIC: Screen Handling

Binary Selection

Introduction
As we saw in structured English, many algorithms need to perform an action only
when a specified condition is met. The general form for this statement was:

	 IF condition THEN
		 action	
	 ENDIF

Hence, in our guessing game, we described the response to a correct guess as:

	 IF guess = dice THEN
		 Say “Correct”	
	 ENDIF

As we’ll see, AGK BASIC also makes use of an if statement to handle such situations.

if
In its simplest form, the if statement in AGK BASIC takes the format shown in FIG-
4.1.

where:

	 condition 	 is any term which can be reduced to a true or false value.

	 statement 	 is any executable AGK BASIC statement.

The diagram also tells us that we can have as many statements between condition and
endif as we require.

If condition evaluates to true, then the set of statements between the if and endif
terms are executed; if condition evaluates to false, then the set of statements are
ignored and execution moves on to any statements following the endif term.

Condition

Generally, the condition will be an expression in which the relationship between two
quantities is compared. For example, the condition

	no < 0

will be true if the content of the variable no is less than zero (i.e. negative).

A condition is sometimes referred to as a Boolean expression and has the general
format given in FIG-4.2.

FIG-4.1

if (format 1)

ËË Unlike the IF in
structured English,
AGK BASIC does not
use the word then.

if condition

statement

endif

Hands On AGK BASIC: Screen Handling� 99

where:

	 value1 and value2		 may be constants, variables, or expressions.

	 relational operator 		 is one of the symbols given in FIG-4.3.

From our syntax diagram, we can see that each of the following are valid conditions:

	no1 < 7
	answer# <> no1# * 2
	gender$ = “female”

The values being compared should normally be of the same type, but it is acceptable
to mix integer and real numeric values as in the conditions:

	v > x#	
	t# < 12

However, it is not possible to compare a numeric against a string value. Therefore,
conditions such as

	name$ = 34
	no1 <> “16”

are invalid.

When two strings are checked for equality as in the condition

	if name$ = “Fred”

the condition will only be considered true if the match is an exact one. Even the
slightest difference between the two strings will return a false result (see FIG-4.4).

FIG-4.3

The Relational
Operators

 English Symbol

is less than <
is less than or equal to <=
is greater than >
is greater than or equal to >=
is equal to =
is not equal to <>

Activity 4.1

Which of the following are NOT valid Boolean expressions?

a) no1 < 0 		 b) name$ = “Fred” 	c) no1 * 3 >= no2 - 6
d) v# => 12.0 	 e) total <> “0” 	 f) address$ = 14 High Street

FIG-4.4

String
Comparison 1

fred Fred
String1 String2

Uppercase
F

Not equalLowercase
f

value1 value2relational operatorFIG-4.2

Boolean
Expression

100� Hands On AGK BASIC: Screen Handling

Spaces count as characters too. So if one or more spaces are included in a string, their
number and positions within two strings must also match if the strings are to be
considered equal. Since spaces are so important, you will occasionally see the space
represented within a string as a triangle. So rather than show the contents of a string
as

	 Hello world

you may see

	 Hello∆world

This is only done when clarification of the exact contents of a string is required. For
example, the strings hello and hello∆ are not equal because the second string contains
a space character after the letter o.

Not only is it valid to test if two string values are equal, or not, as in the conditions

	if name$ = “Fred”
	if village$ <> “Turok”

it is also valid to test if one string value is greater or less than another. For example,
it is true that

	“B” > “A”

Such a condition is considered true not because B comes after A in the alphabet, but
because the coding used within the computer to store a “B” has a greater numeric
value than the code used to store “A”.

The method of coding characters is known as ASCII (American Standard Code for
Information Interchange). This coding system is given in Appendix A at the back of
the book.

If you are comparing strings which only contain letters, then one string is less than
another if that first string would appear first in an alphabetically ordered list. Hence,

	 “Aardvark” 		 is less than 		 “Abolish”

But watch out for upper and lower case letters. All upper case letters are less than all
lower case letters. Hence, the condition

	“A” < “a”

is true.

If two strings differ in length, with the shorter matching the first part of the longer as

	“abc” < “abcd”

then the shorter string is considered to be less than the longer string. Also, because
the computer compares strings using their internal codes, it can make sense of a
condition such as

	“$” < “?”

which is also considered true since the $ sign has a smaller value than the ? character

Hands On AGK BASIC: Screen Handling� 101

in the ASCII coding system.

Structured English to Code

It is not always obvious how to translate an IF statement written in structured English.
In fact, some may take a great deal of coding. For example, the structured English

	 IF the text entered contains any punctuation marks THEN
		 Remove the punctuation marks from the text
	 ENDIF

would require several lines of programming code to achieve. On the other hand,
some statements that might look difficult to code are very simple:

	 Structured English:

		 IF number is negative THEN
			 Make it positive
		 ENDIF

	 Code:

		 if number < 0
			 number = -number
		 endif

	 Structured English:

		 IF number is even THEN
			 Display “Even number”
		 ENDIF

	 Code:

		 if number mod 2 = 0
			 Print(”Even number”)
		 endif

Activity 4.2

Determine the result of each of the following conditions (true or false). You
may have to examine the ASCII coding at the end of the book for f).	

a) “wxy” = “w xy”		 b) “def” < “defg” 		 c) “AB” < “BA”
d) “cat” = “cat.” 	 e) “dog” = “Dog”		 f) “*” > “&”

ËË Notice the use of
indentation in the program
listings. BASIC does not
demand that this be done,
but indentation makes a
program easier to read - this
is particularly true when
more complex programs are
written.

If you wanted the
display to update
immediately, you would
also add Sync() after the
Print() statement. Activity 4.3

Start a new project EnglishToCode. The program will accept values from
the screen buttons we used previously. The program should implement the
following logic:

	 Read in values for no1 and no2
	 IF no1 is exactly divisible by no2 THEN
		 Display “Exactly divisible”
	 ENDIF

Test your program.

Place the lines
	 do

	 loop
at the end of your
code.

102� Hands On AGK BASIC: Screen Handling

Using if

As we have already said, the syntax diagram for the if statement shows us that we
can have more than one statement between the condition and the term endif. For
example, if a game which used two dice required the dice to be re-thrown if they both
showed the same value, then we would write:

	if dice1 = dice2
		 dice1 = Random(1,6)
		 dice2 = Random(1,6)
	endif

Compound Conditions - the and and or Operators
Two or more simple conditions (like those given earlier) can be combined using
either the term and or the term or (just as we did in structured English in Chapter 1).

The term and should be used when we need two conditions to be true before an action
should be carried out. For example, if a game requires you to throw two sixes to win,
this could be written as:

	dice1 = Random(1,6)
	dice2 = Random(1,6)
	if dice1 = 6 and dice2 = 6
		 Print(“You win!”)
		 Sync()
	endif

The statements Print(“You win!”) and Sync() will only be executed if both
conditions, dice1= 6 and dice2 = 6, are true.

You may recall from Chapter 1 that there are four possible combinations for an if
statement containing two simple expressions. Because these two conditions are
linked by the and operator, the overall result will only be true when both conditions
are true. These combinations are shown in FIG-4.5.

Activity 4.4

Load Dice, the project you created in Chapter 3.

Modify the program so that, after the player has typed in his guess, the
program displays the word Wrong if the guess and dice values are not equal.

Test and save your program.

Activity 4.5

Modify the latest version of Dice so that, when the number generated differs
from the guess, the program displays the word Wrong and also the difference
between the two numbers. For example if the computer generates the value 8
and the player guesses 3 then the output would be:

	 Wrong. You were out by 5
	 My number was 8
	 Your guess was 3

Hands On AGK BASIC: Screen Handling� 103

We link conditions using the or operator when we require only one of the conditions
given to be true. For example, if a dice game produces a win when the total of two
dice is either 7 or 11, we could write the code for this as:

	dice1 = Random(1,6)	
	dice2 = Random(1,6)	
	total = dice1 + dice2	
	if total = 7 or total = 11
		 Print(“You win!”)
		 Sync()
	endif

The four possible combinations for two conditions linked by an or are shown in FIG-
4.6.

When you use multiple conditions linked with and or or, each condition must be
properly formed; you cannot shorten things the way you might in standard English.
Hence, the compiler would not accept

	if total = 7 or 11

There is no limit to the number of conditions that can be linked using and and or. For
example, a statement of the form

	 IF condition1 AND condition2 AND condition3

means that all three conditions must be true, while the statement

	 IF condition1 OR condition2 OR condition3

means that at least one of the conditions must be true.

FIG-4.6

OR
Combinations

 condition 1 condition 2 condition 1 OR condition 2

 false false false
false true true
true false true
true true true

 condition 1 condition 2 condition 1 AND condition 2

 false false false
false true false
true false false
true true true

Activity 4.6

Start a new project called TwoDice. Create a program using the two-dice code
given above.

Add statements to display the values thrown on the two dice. This should
appear irrespective of the values thrown. You will have to reposition the
Sync() statement to get the program to operate correctly.

Test and save your program.

FIG-4.5

AND
Combinations

104� Hands On AGK BASIC: Screen Handling

A complex condition can also contain a mix of and and or operators. An obvious
example of this is the description of how to save a file in AGK:

	 IF Save button pressed OR Ctrl key down AND S key pressed THEN
	 	 Save current file
	 ENDIF

The trouble with conditions like this is that they are open to more than one
interpretation. We could take it to mean:

 	 that we must press the S key while either clicking on the Save button or
	 holding down the Ctrl key

rather than the intended

	 either clicking on the Save button or holding down the Ctrl key while pressing
	 the S key.

Once we start to create conditions containing both and and or operators, we need to
be aware that Boolean operators (AND, OR and NOT) have a priority order just as
arithmetic operators do. In a condition that contains both and and or, the and operator
takes precedence over the or operator. Knowing this eliminates any ambiguity in the
conditions for saving a file in the example above.

The normal rule of performing the and operation before or can be modified by the
use of parentheses. Expressions within parentheses are always evaluated first. Hence,
if we really did have to click on the press the S key while pressing the Save button or
holding down the Ctrl key, we would write the condition as

	 (Save button pressed OR Ctrl key down) AND S key pressed

Activity 4.7

Modify your TwoDice project so that the You win! message also appears if both
dice have equal values.

Test and save your program.

Activity 4.8

Start a new project called ThreeDice.
In this game three dice are thrown. If at least two dice show the same value,
the player has won.

Write a program which implements the following logic:	

	 Throw all three dice	
	 IF any two dice match THEN
		 Display “You win!”	
	 ENDIF
	 Display the value of each dice

Test and save your program.

Hands On AGK BASIC: Screen Handling� 105

The not Operator

AGK BASIC’s not operator works in exactly the same way as that described in
Chapter 1. It is used to negate the final result of a Boolean expression.

In the ThreeDice project you created in Activity 4.8, the if statement used was

	if dice1 = dice2 or dice1 = dice3 or dice2 = dice3
		 Print(“You win”)
	endif

Now, if we wanted to change the game to display “You lose” instead of “You win”
then we would have to test for the opposite condition.

As you can see, working out the opposite condition takes a few moments - you may
even have got it wrong on your first attempt. It’s much easier, given that you already
have the condition required for the “You win” message, just to add a not to the
condition:

	if not(dice1 = dice2 or dice1 = dice3 or dice2 = dice3)
		 Print(“You lose”)
	endif

Note that the original condition is placed in parentheses. This is because the not
operator has an even higher priority than and and or. Without the parenthesis, the not
operation would be applied to the first term only - dice1 = dice2.

The Boolean operator priority is shown in FIG-4.7.

Operator Priority
()

and
not

1
2
3
4or

Activity 4.9

Write down formal conditions (including any necessary parentheses) for the
following situations:

a)	 In the game of Monopoly any one of three situations causes your
	 piece to “go to jail”. These are: landing on the “Go to Jail” square,
	 picking up a “Go to Jail” card, and, throwing the same value on both
	 dice three times in a row.

b)	 In a video game, one way to win is to collect 10,000 gold pieces; an 	
	 alternative is to free the princess from the tower and slay the dragon.

c)	 In a game of cards, you lose 100 points if you hold either the King or
	 Queen of Spades when the Ace of Diamonds is played.

Activity 4.10

Without using the not operator, write down the condition that should be tested
when displaying “You lose” in the dice game.

FIG-4.7

Boolean Priority

106� Hands On AGK BASIC: Screen Handling

else - Creating Two Alternative Actions

In its present form the if statement allows us to perform an action when a given
condition is met. But sometimes we need to perform an action only when the condition
is not met. For example, when the user has to guess the number generated by the
computer, we use an if statement to display the word “Correct” when the user
guesses the number correctly:

	if guess = number
		 Print(“Correct”)
	endif

However, shouldn’t we display an alternative message when the player is wrong?
One way to do this is to follow the first if statement with another testing the opposite
condition:

	if guess = dice
		 Print(“Correct”)	
	endif

	if not guess = dice
		 Print(“Wrong”)
	endif

Although this will work, it’s not very efficient since we always have to test both
conditions - and the second condition can’t be true if the first one is!
As an alternative, we can add the word else to our original if statement and follow
this by the action we wish to have carried out when the stated condition is false:

	if guess = dice
		 Print(“Correct”)
	else
		 Print(“Wrong”)
	endif

This gives us the longer version of the if statement format as shown in FIG-4.8.

Note that we can have an unlimited number of statements between else and endif.

We could also have
written

if guess <> dice

FIG-4.8

if ..else..endif

if condition

else

statement

endif

statement

Activity 4.11

In your Dice program, modify the existing if statement to match the version
given above so that either “Correct” or “Wrong” is displayed. Remove the
code to calculate the difference between the dice and guess values.

Test and save your program.

Hands On AGK BASIC: Screen Handling� 107

The Other if Statement
AGK BASIC actually offers a second version of the if statement which has the
format shown in FIG-4.9.

As with the previous if statement, the else section is optional but this version uses
the word then and omits the endif term. Also, as the syntax diagram shows, you are
restricted to a single statement after the then and else terms.

A major restriction when using this version of the if statement is that the else
section of the statement must appear on the same line of the screen as the rest of the
statement.

This means that the code you added in Activity 4.10 would have to be written as:

	if dice = guess then Print(“Correct”) else Print(“Wrong”)

This lack of indented layout is enough to have the hardened programmer throw up
her hands in horror!

Even when a single statement within the if statement is sufficient for the logic being
coded, it is probably best to avoid this version of the if statement, since the
requirement to place the if and else terms on the same line does not allow a good
layout for the program code.

FIG-4.9

if..then..else

Activity 4.12

Start a new project called TwoNumbers.

Make use of the button input files to read in two integer values and then
display the smaller of the two numbers. Also display a message indicating
whether this smaller value is an odd or even number.

The program should use the following logic:

	 Display a prompt message for first number
	 Read the first number
	 Display a prompt message for the second number
	 Read the second number
	 IF first number is less than the second number THEN
	 	 Set answer to first number
	 ELSE
		 Set answer to second number
	 ENDIF
	 Display answer
	 IF answer is an even number THEN
		 Display “Even”
	 ELSE
		 Display “Odd”
	 ENDIF

if condition elsestatement statementthen []

108� Hands On AGK BASIC: Screen Handling

Summary
±	Conditional statements are created using the if statement.

±	A Boolean expression is one which gives a result of either true or false.

±	Conditions linked by the and operator must all be true for the overall result to
be true.

±	Only one of the conditions linked by the or operator needs to be true for the
overall result to be true.

±	When the not operation is applied to a condition, it reverses the overall result.

±	The statements following a condition are only executed if that condition is
true.

±	Statements following the term else are only executed if the condition is false.

±	A second version of the if statement is available in AGK BASIC in which if
and else must appear on the same line.

Activity 4.13

a) 	 What is a Boolean expression?
b) 	 How many relational operators are there?
c) 	 If a condition contains and, or and not operators, which will be 	
	 performed first?

Hands On AGK BASIC: Screen Handling� 109

Multi-Way Selection

Introduction
A single if statement is fine if all we want to do is perform one of two alternative
actions, but what if we need to perform one action from three or more possible
actions? How can we create code to deal with such a situation?

In structured English we use a modified IF statement of the form:

	 IF
 		 condition 1:	
			 action1		
		 condition 2:			
			 action 2
	 ELSE
			 action 3	
	 ENDIF

However, this structure is not available in AGK BASIC and hence we must find some
other way to implement multi-way selection.

Nested if Statements
There are two main ways of achieving multi-way selection in AGK BASIC. One is
to use nested if statements - where one if statement is placed within another. For
example, let’s assume in the Dice project that we want to display one of three
messages: Correct, Your guess is too high, or Your guess is too low. Our previous
solution allowed for two alternative messages, Correct or Wrong, and was coded as:

	if guess = dice
		 Print(“Correct”)
	else
		 Print(“Wrong”)
	endif

In this new problem the Print(“Wrong”) statement needs to be replaced by the two
alternatives, Your guess is too high or Your guess is too low. But we already know
how to deal with two alternatives - use an if statement. The if statement for this
situation would be:

	if guess > dice
		 Print(“Your guess is too high”)
	else
		 Print(“Your guess is too low”)
	endif

If we now remove the Print (“Wrong”) statement from our earlier code and substitute
the four lines given above, we get:

	if guess = dice
		 Print(“Correct”)
	else
		 if guess > dice
			 Print(“Your guess is too high”)
		 else
			 Print(“Your guess is too low”)
		 endif
	endif

110� Hands On AGK BASIC: Screen Handling

We have created a nested if situation, where the if guess > dice statement is inside
the else section of the if guess = dice statement.

There is no limit to the number of if statements that can be nested. Hence, if we
required four alternative actions, we might use three nested if statements, while four
nested if statements could handle five alternative actions. To demonstrate this we’ll
take our number guessing game a stage further and have it display one of five possible
messages:

 	Your guess is too high 			 (if the guess is more than 2 above the dice)
	 Your guess is slightly too high 	 (if the guess is no more than 2 above the dice)
	 Correct 						 (if the guess equals the dice)
 	Your guess is slightly too low 	 (if the guess is no more than 2 below the dice)
	 Your guess is too low			 (if the guess is more than 2 below the dice)

When we have a set of mutually exclusive conditions, as in the Dice example given
above, following the standard layout of indenting within an if statement results in
the layout shown below:

	if diff > 2
		 Print(“Your guess is too low”)
	else
		 if diff > 0
			 Print(“Your guess is slightly too low”)
		 else
			 if diff = 0

Activity 4.14

Modify your Dice project so that the game will respond with one of three
messages as shown in the code given above.

Test and save your program.

Activity 4.15

Start a new project called Number.

The program should generate a random number in the range -12 to +12.

The program should now display one of the following messages: Negative (if
the number is less than zero), Zero (if the number is zero), or Positive (if the
number is greater than zero). Finally, the value of the number should also be
displayed.

Test and save your program.

Activity 4.16

Reload Dice.

Modify the code so that it displays one of the five messages given above under
the appropriate conditions. (HINT: You’ll have to calculate the difference
between the guess and dice values again.)

Test and save your program.

ËË Mutually
exclusive conditions
refers to a set of
conditions where no
more than one of those
conditions can be true
at the same time.

Hands On AGK BASIC: Screen Handling� 111

				 Print(“Correct”)
			 else
				 if diff >= -2
					 Print(“Your guess is slightly too high”)
				 else
					 Print(“Your guess is too high”)
				 endif
			 endif
		 endif
	endif

In a situation that included even more options, the indentation can be so extreme that
you may reach the right-hand margin! To solve this problem we often re-arrange the
layout of nested if statements to be

	if diff > 2
		 Print(“Your guess is too low”)
	else if diff > 0
		 Print(“Your guess is slightly too low”)
	else if diff = 0
		 Print(“Correct”)
	else if diff >= -2
		 Print(“Your guess is slightly too high”)
	else
		 Print(“Your guess is too high”)
	endif endif endif endif

with each option given the same indention as the last, and with the closing set of
endif keywords placed on a single line. This gives a much neater layout which is still
easy to follow.

elseif

The only problem with the previous solution is the need for so many endif terms at
the end of the selection process. To avoid this we can replace the separate else if
terms with the single word elseif. When we do this, only a single endif term is
required at the end of the structure:

if diff > 2
		 Print(“Your guess is too low”)
	elseif diff > 0
		 Print(“Your guess is slightly too low”)
	elseif diff = 0
		 Print(“Correct”)
	elseif diff >= -2
		 Print(“Your guess is slightly too high”)
	else
		 Print(“Your guess is too high”)
	endif

Activity 4.17

Modify the layout of your Dice program to conform to this new layout style for
multi-way selection. Resave your project.

Activity 4.18

Modify Dice to use the elseif term. Resave your project.

112� Hands On AGK BASIC: Screen Handling

The select Statement
An alternative, and often clearer, way to deal with choosing one action from many is
to employ the select statement. The simplest way to explain the operation of the
select statement is simply to give you an example.

In the code snippet given below we display the name of the day of week corresponding
to the number generated. For example, 1 results in the word Sunday being displayed.

	day = Random(0,8)
	select day
		 case 1:
			 Print(“Sunday”)
		 endcase
		 case 2:
			 Print(“Monday”)
		 endcase
		 case 3:
			 Print(“Tuesday”)
		 endcase
		 case 4:
			 Print(“Wednesday”)
		 endcase
		 case 5:
			 Print(“Thursday”)
		 endcase
		 case 6:
			 Print(“Friday”)
		 endcase
		 case 7:
			 Print(“Saturday”)
		 endcase
	endselect
	Print(day)
	Sync()

Once a value for day has been generated, the select statement chooses the case
statement that matches that value and executes the code given within that section. All
other case statements are ignored and any instructions following the endselect
statement are executed. For example, if day = 3, then the statement given beside case
3 will be executed (i.e. Print(“Tuesday”)) and the remainder of the whole select..
endselect structure ignored with the next statement executed being Print(day). If
day were to be assigned a value not given in any of the case statements (e.g. 0 or 8),
the whole select statement would be ignored and no part of it executed and the next
statement to be executed would be Print(day).

Optionally, a special case statement can be added just before the endselect keyword.
This is the case default option which is used to catch all other values which have
not been mentioned in previous case statements. For example, if we modified our
select statement above to end with the code

		 case 7:
			 Print(“Saturday”)
		 endcase
		 case default
			 Print(“Invalid day”)
		 endcase
	endselect

Hands On AGK BASIC: Screen Handling� 113

then, if a value outside the range 1 to 7 is generated, the statement in the case default
option will be executed.

FIG-4.10 shows how the select statement is executed.

Several values can be specified for each case option. If the value of the term given
in the select statement matches any of the values listed in a case statement, then the
statement(s) in that case option will be executed. For example, using the lines

	num = Random(1,10)
	select num
		 case 1,3,5,7,9:
			 Print(“Odd”)
		 endcase
		 case 2,4,6,8,10:
			 Print(“Even”)
		 endcase
	endselect
	print(num)
	Sync()

FIG-4.10

How select Works

select expression

constant1case :
statements

endcase

case default

statements

endcase

endselect

constant2case

statements

endcase

:

3
Once the chosen
section of the select
statement has been
executed, control
moves to the first
statement following
endselect

2 - option 2
if not matching case
value is found, the
statments in the
case default option
are executed

2 - option 1
the statements in
the case containing
a match for
expression are
executed

1
expression is
evaluated

if no case
default is included, then

no part of the select
endselect structure is

executed

statements

114� Hands On AGK BASIC: Screen Handling

the word Odd would be displayed if any odd number between 1 and 9 was entered.

The values given beside the case keyword may also be a string as in the example
below:

	name$ = GetName()
 	select name$
		 case “Jack”,”Jill” :	
			 Print(“Hello friend”)
		 endcase
		 case default
			 Print(“I do not know your name”)
		 endcase
	endselect
	Sync()

Although the case value may also be a real value as in the line

	CASE 1.52

it is a bad idea to use these since the machine cannot store real values accurately. If
a real variable contained the value 1.52000001 it would not match with the case
value given above.

The general format of the select statement is given in FIG-4.11.

where:

	 expression 		 is a variable or expression which reduces to a single
				 integer, real or string value.

	 value 			 is a constant of any type (integer, real or string).

	 statement 		 is any valid AGK BASIC statement 			
				 (even another select statement!).

GetName() is
assumed to be
a user-written
function that
allows the player
to enter their
name.

FIG-4.11

select..endselect select expression

constantcase []
,

:

statement

endcase

case default

statement

endcase

endselect

Hands On AGK BASIC: Screen Handling� 115

Not all multi-way selection situations can be coded using the select..endselect
statement. For example, let’s say a number can be in the range 1 to 1000 and we want
to perform specific actions for each of the groupings 1 to 200, 201 to 400, 401 to 600,
601 to 1000 then, since it would be impractical to list all the possible values for each
group in a case line, we would have to code such a problem using nested if
statements.

Testing Selective Code
When a program contains one or more if structures, our test strategy has to change
to cope with this. For every if statement within a program we need to create at least
two test values: one which results in the condition within the if statement being true,
the other in the condition being false. Therefore, if a program contained the lines

	no = GetButtonEntry()
	if no mod 2 = 0
		 Print(“This is an even number”)
	endif

then we need to have a test value for no which is even and another which is odd. For
example, we could choose the values 10 and 3.

Another important test for conditions involving less than, or greater than operators
is to find out what happens when the variable’s value is exactly equal to the value
against which it is being tested. For example, if a program contained the lines

	if result < 0
		 Print(“Negative”)
	else
		 Print(“Positive”)
	endif

then we would want to include zero as one of our test values, giving us three test

This also applies to
less than or equal to
and greater than or
equal to operators.

Activity 4.19

Start a new project, Days.

The program should generate a random number in the range 0 to 8 and display
the corresponding day of the week if the number is in the range 1 to 7. For any
other value, the message Invalid day should be displayed.

Test and save your program.

Activity 4.20

Start a new project, Cards.

Generate a random number in the range 1 to 13 (the number represents the
value of a playing card - 11, 12 and 13 being the Jack, Queen and King).

The program should display the message Court card if 11, 12, or 13 is
generated and Spot card for all other values.

Test and run your program.

116� Hands On AGK BASIC: Screen Handling

values: one less than zero, zero, and one greater than zero. So we could use, say, -7,
0 and 8.

Some of our projects don’t allow for user input - instead they use randomly generated
values. So we have no control over what values will be used when the program is run!

For test purposes, in a situation like this, we can modify the program’s code
temporarily so we can control the value used. Hence, in our Numbers project, for
example, we could change the line

	no = Random(-12,12)

to

	no = -7

Now we can run the program and see if we get the expected result.

In the next two runs of the program we would change the assignment line to 0 and
then 8 to get our other two test values. Once we have satisfied ourselves that the
expected results have been obtained then we must restore the original code line to the
program allowing the value of no to be generated randomly once more.

When an if statement contains more than one condition linked with and or or
operators, testing needs to check each possible combination of true and false settings.
For example, if a program contained the line

	if dice1 = 6 and dice2 = 6

then our tests should include all possible combinations of true and false for the two
conditions. A possible set of values is shown in FIG-4.10.

In a complex condition it is sometimes not possible to create every theoretical
combination of true and false. For example, if a program contains the line

	if total = 7 or total = 11 or dice1 = dice2

then the combinations of true and false for the three conditions are shown in FIG-
4.11.

But the last two combinations in the table are impossible to achieve since total cannot

FIG-4.10

Test Data and
Condition Results

 dice1 dice2 Result

 3 5 false, false
1 6 false, true
6 4 true , false
6 6 true , true

FIG-4.11

Three Condition
Permutations

 total=7 total=11 dice1=dice2

 false false false
false false true
false true false
false true true
true false false
true false true
true true false
true true true

Hands On AGK BASIC: Screen Handling� 117

contain the values 7 and 11 at the same time (the conditions are mutually exclusive).
So our test data will have test values which create only the remaining 6 combinations.

Summary
± The term nested if statements refers to the construct where one or more if

statements are placed within the structure of another if statement.

± Multi-way selection can be achieved using nested if or by using the select
statement.

±	The select statement can be based on integer, real or string values.

±The case line can have any number of values, each separated by a comma.

±The case default option is executed when the value being searched for
matches none of those given in the CASE statements.

±Testing a simple if statement should ensure that both true and false results are
tested.

±Where a specific value is mentioned in a condition (as in no < 0) , that value
should be part of the test data.

±When a condition contains and or or operators, every possible combination of
results should be tested.

±Nested if statements should be tested by ensuring that every possible path
through the structure is executed by the combination of test data.

±select structures should be tested by using every value specified in the case
statements.

±select should also be tested using a value that does not appear in any of the
case statements.

Activity 4.21

Suggest a set of test values for the latest version of the Dice project (Activity
4.17).

How would we have to modify the program’s code in order to use these test
values?

118� Hands On AGK BASIC: Screen Handling

Solutions
Activity 4.1

a) Valid.
b) Valid.
c) Valid.
d) Invalid. => is not a relational operator (should be >=)
e) Invalid. Integer variable compared with string.
f) Invalid. 14 High Street should be in double quotes.

Activity 4.2
a) False. Only the second string contains a space.
b) True. “def”is shorter and matches the first three characters
	 of “defg”.
c) True. “A” comes before “B”.
d) False. Only the second string contains a full stop.
e) False. Only the second string contains a capital D.
f) True. “*” has a greater ASCII coding than “&”

Activity 4.3
Program code:

rem *** include Buttons code ***
#include “Buttons.agc”
rem *** Setup the buttons for input ***
SetUpButtons()
rem *** Get the first value ***
Print(“Enter first value :”)
Sync()
Sleep(2000)
no1 = GetButtonEntry()
rem *** Get the second value ***
Print(“Enter second value : “)
Sync()
Sleep(2000)
no2 = GetButtonEntry()
rem *** if no remainder, display message ***
if no1 mod no2 = 0
 Print(“Exactly divisible”)
 Sync()
endif
do
loop

Activity 4.4
Modified code for Dice is:

rem *** Dice program ***
rem *** Simulates the roll of a 10-sided dice ***

rem *** include Buttons***
#include “Buttons.agc”

rem *** Display buttons ***
SetUpButtons()
rem *** Throw dice ***
dice = Random(0,9)
rem *** Display prompt ***
Print(“Guess what my number is “)
Sync()
Sleep(2000)
rem *** Get a value ***
guess = GetButtonEntry()
rem *** Display message if guess is wrong ***
if guess <> dice
 Print(“Wrong”)
endif
rem *** Display values ***
PrintC(“My number was : “)
Print(dice)
PrintC(“Your guess was : “)
Print(guess)
Sync()
do
loop

Activity 4.5
Modified code for Dice is:

rem *** Dice program ***
rem *** Simulates the roll of a 10-sided dice ***

rem *** include Buttons***
#include “Buttons.agc”

rem *** Display buttons ***
SetUpButtons()
rem *** Throw dice ***
dice = Random(0,9)
rem *** Display prompt ***
Print(“Guess what my number is “)
Sync()
Sleep(2000)
rem *** Get a value ***
guess = GetButtonEntry()
rem *** Display message and difference ***
rem *** if guess is wrong ***
if guess <> dice
	 PrintC(“Wrong. You were out by “)
 	 difference = dice - guess
 	Print(difference)
endif
rem *** Display values ***
PrintC(“My number was : “)
Print(dice)
PrintC(“Your guess was : “)
Print(guess)
Sync()
do
loop

You may get a negative value displayed when the guess is
greater than the random number generated.

Activity 4.6
Code for TwoDice:

rem *** Two dice ***

rem *** Throw dice ***
dice1 = Random(1,6)
dice2 = Random(1,6)
rem *** Check for a win ***
total = dice1 + dice2
if total = 7 or total = 11
 Print(“You win!”)
endif
rem *** Display dice values ***
PrintC(“Value of dice 1 : “)
Print(dice1)
PrintC(“Value of dice 2 : “)
Print(dice2)
Sync()
do
loop

Activity 4.7
Modified code for TwoDice:

rem *** Two dice ***

rem *** Throw dice ***
dice1 = Random(1,6)
dice2 = Random(1,6)
rem *** Check for a win ***
total = dice1 + dice2
if total = 7 or total = 11 or dice1 = dice2
 Print(“You win!”)
endif
rem *** Display dice values ***
PrintC(“Value of dice 1 : “)
Print(dice1)
PrintC(“Value of dice 2 : “)
Print(dice2)
Sync()
do
loop

Hands On AGK BASIC: Screen Handling� 119

Activity 4.8
Code for ThreeDice:

rem *** Three Dice ***

rem *** Throw dice ***
dice1 = Random(1,6)
dice2 = Random(1,6)
dice3 = Random(1,6)
rem *** IF any two dice match THEN ***
if dice1 = dice2 or dice1 = dice3 or dice2 = dice3
 Print(“You win!”)
endif
rem *** Display values ***
PrintC(“dice 1: “)
Print(dice1)
PrintC(“dice 2: “)
Print(dice2)
PrintC(“dice 2: “)
Print(dice3)
Sync()
do
loop

Activity 4.9
a)	 IF player lands on “Go to Jail” OR player picks up a
	 “Go to Jail” card OR player throws three doubles in a
	 row THEN

b)	 IF 10,00 gold pieces collected OR princess freed AND
	 dragon slayed THEN

c)	 IF (holding King of Spades OR holding Queen of
	 Spades) AND Ace of Diamonds played THEN

Activity 4.10
dice1 <> dice2 and dice1 <> dice3 and dice2 <> dice3

Activity 4.11
Modified code for Dice is:

rem *** Dice program ***
rem *** Simulates the roll of a 10-sided dice ***

rem *** include Buttons***
#include “Buttons.agc”

rem *** Display buttons ***
SetUpButtons()
rem *** Throw dice ***
dice = Random(0,9)
rem *** Display prompt ***
Print(“Guess what my number is “)
Sync()
Sleep(2000)
rem *** Get a value ***
guess = GetButtonEntry()
rem *** Display message ***
if guess = dice
	 Print(“Correct”)
else
	 Print(“Wrong”)
endif
rem *** Display values ***
PrintC(“My number was : “)
Print(dice)
PrintC(“Your guess was : “)
Print(guess)
Sync()
do
loop

Activity 4.12
Code for TwoNumbers

rem *** Smaller odd/even ***

rem *** include Buttons functions ***
#include “Buttons.agc”

rem *** Display buttons ***
SetUpButtons()
rem *** Get numbers ***
Print(“Enter first number “)
Sync()
Sleep(2000)
no1 = GetButtonEntry()
Print(“Enter second number “)
Sync()
Sleep(2000)
no2 = GetButtonEntry()
rem *** Determine smaller value ***
if no1 < no2
 answer = no1
else
 answer = no2
endif
rem *** Display smaller ***
PrintC(“Smaller value is “)
Print(answer)
rem *** Determine if answer is odd or even ***
if answer mod 2 = 0
 Print(“This is an even number”)
else
 Print(“This is an odd number”)
endif
Sync()
do

loop

Activity 4.13
a)	 A Boolean expression is an expression whose result is
	 either true or false.
b)	 Six.	 <, <=, >, >=, =, <>
c)	 not is performed first, and next and or last. This order
	 will change if parentheses are used.

Activity 4.14
Modified code for Dice is:

rem *** Dice program ***
rem *** Simulates the roll of a 10-sided dice ***

rem *** include Buttons***
#include “Buttons.agc”

rem *** Display buttons ***
SetUpButtons()
rem *** Throw dice ***
dice = Random(0,9)
rem *** Display prompt ***
Print(“Guess what my number is “)
Sync()
Sleep(2000)
rem *** Get a value ***
guess = GetButtonEntry()
rem *** Display message ***
if guess = dice
 Print(“Correct”)
else
 if guess > dice
 Print(“Your guess is too high”)
 else
 Print(“Your guess is too low”)
 endif
endif
rem *** Display values ***
PrintC(“My number was : “)
Print(dice)
PrintC(“Your guess was : “)
Print(guess)
Sync()
do
loop

Activity 4.15
Code for Number:

rem *** Random number between -12 and 12 ***

rem *** Generate number ****
no = Random(-12,12)
rem *** Display number’s sign ***

120� Hands On AGK BASIC: Screen Handling

if no < 0
 Print(“Negative”)
else
 if no = 0
 Print(“Zero”)
 else
 Print(“Positive”)
 endif
endif
rem *** Disply number ***
Print(no)
Sync()
do
loop

Activity 4.16
Modified code for Dice:

rem *** Dice program ***
rem *** Simulates the roll of a 10-sided dice ***

rem *** include Buttons***
#include “Buttons.agc”

rem *** Display buttons ***
SetUpButtons()
rem *** Throw dice ***
dice = Random(0,9)
rem *** Display prompt ***
Print(“Guess what my number is “)
Sync()
Sleep(2000)
rem *** Get a value ***
guess = GetButtonEntry()
rem *** Display message ***
diff = dice - guess
if diff > 2
 Print(“Your guess is too low”)
else
 if diff > 0
 Print(“Your guess is slightly too low “)
 else
 if diff = 0
 Print(“Correct”)
 else
 if diff >= -2
 Print(“Your guess is slightly too
 							 high”)
 else
 Print(“Your guess is too high”)
 endif
 endif
 endif
endif
rem *** Display values ***
PrintC(“My number was : “)
Print(dice)
PrintC(“Your guess was : “)
Print(guess)
Sync()
do
loop

Activity 4.17
The multi-way selection section of Dice’s code should now
be have the following layout:

if diff > 2
 Print(“You guess is too low”)
else if diff > 0
 Print(“Your guess is slightly too low “)
else if diff = 0
 Print(“Correct”)
else if diff >= -2
 Print(“Your guess is slightly too high”)
else
 Print(“Your guess is too high”)
endif endif endif endif

Activity 4.18
New new multi-way selection coding in Dice should now be:

if diff > 2
 Print(“You guess is too low”)

elseif diff > 0
 Print(“Your guess is slightly too low “)
elseif diff = 0
 Print(“Correct”)
elseif diff >= -2
 Print(“Your guess is slightly too high”)
else
 Print(“Your guess is too high”)
endif

Activity 4.19
Code for Days:

rem *** Display day of the week ***

rem *** Generate value ***
day = Random(0,8)

rem *** Display day of week ***
select day
 case 1:
			 Print(“Sunday”)
		 endcase
		 case 2:
			 Print(“Monday”)
		 endcase
		 case 3:
			 Print(“Tuesday”)
		 endcase
		 case 4:
			 Print(“Wednesday”)
		 endcase
		 case 5:
			 Print(“Thursday”)
		 endcase
		 case 6:
			 Print(“Friday”)
		 endcase
		 case 7:
			 Print(“Saturday”)
		 endcase
		 case default
 Print(“Invalid day”)
 endcase
endselect
rem *** Display number generated ***
Print(day)
Sync()
do
loop

Activity 4.20
Code for Cards:

rem *** Cards ***

rem *** Generate card value ***
card = Random(1,13)

rem *** Display card type ***
select card
 case 11,12,13:
 Print(“Court card”)
 endcase
 case default
 Print(“Spot card”)
 endcase
endselect
Print(card)
Sync()
do
loop

Note that all of the spot cards can be handled in the case
default option because there is no chance of an invalid value
being used.

Activity 4.21
The test data needs to cover all the possible paths through the
nested if statements. In doing this we will have tested each
condition for both true and false options.

Hands On AGK BASIC: Screen Handling� 121

So possible values are

	 dice	 guess	 Expected results
	 8	 2	 Your guess is too low
	 5 4	 Your guess is slightly too low
	 7	 7	 Correct
	 2	 4	 Your guess is slightly too high
	 3 	 8	 Your guess is too high

In addition, we would expect the values of dice and guess to
be displayed.

Since the dice values are randomly generated it would
be impractical to use our test data. We can overcome this
problem by setting the variable dice to a specific value rather
than determining its value using Random(). Once testing is
complete, the random assignment can be restored.

122� Hands On AGK BASIC: Screen Handling

Hands On AGK BASIC: Iteration� 123

In this Chapter:

T while..endwhile Structure

T	repeat..until Structure

T	for..next Structure

T	do..loop Structure

T	Validating Input

T	The exit Statement

T Testing Loop Structures

Iteration

124� Hands On AGK BASIC: Iteration

Iteration

Introduction
Iteration is the term used when one or more statements are carried out repeatedly. As
we saw in Chapter 1, structured English has three distinct iterative structures: FOR ..
ENDFOR, REPEAT .. UNTIL and WHILE .. ENDWHILE.

AGK BASIC, on the other hand, has four iterative structures. One of these takes the
same form as their structured English equivalent, but others differ slightly and
therefore care should be taken when translating structured English statements to
AGK BASIC.

The while..endwhile Construct
The while statement is probably the easiest of AGK BASIC’s loop structures to
understand, since it is identical in operation and syntax to the WHILE loop in
structured English.

This structure allows us to continually execute a section of code as long as a specified
condition is being met. For example, if, in a game, a player’s character sustains
damage of 10 points while he stands on a “bad health” area, this can be described in
structured English as

	 WHILE player on “bad health” area DO
		 Reduce player’s health by 10
	 ENDWHILE

which can be coded in AGK BASIC as:

	while floor_area = 25
		 health = health - 10
	endwhile

The syntax of AGK BASIC’s while .. endwhile construct is shown in FIG-5.1.

where:

	 condition 		 is a Boolean expression and may include and, or, not
				 and parentheses as required.

	 statement 		 is any valid AGK BASIC statement.

while..endwhile is an entry-controlled loop. That is, the condition at the start of
the loop is tested and only if that condition is true, are the statements within the loop
executed. When the endwhile term is reached, control returns to the while line and
the condition is retested. If the condition is found to be false, then looping stops with
an immediate jump from the while line to the endwhile line, skipping the statements
in between.

FIG-5.1

while..endwhile

AGK BASIC’s
while statement
does not use the
term do.

while condition

statement

endwhile

The code assumes a
variable called floor_
area records the position
of the character and that
the “bad health” area is
at position 25.

Hands On AGK BASIC: Iteration� 125

A visual representation of how this loop operates is shown in FIG-5.2.

Note that the loop body may never be executed if condition is false when first tested.

A common use for this loop statement is validation of input. So, for example, in our
number guessing game, we might ensure that the user types in a value between 0 and
9 when entering their guess by using the logic

	 Get guess
	 WHILE guess outside the range 0 to 9 DO
		 Display error message
		 Get guess
	 ENDWHILE

which can be coded in AGK BASIC using our GetButtonEntry() function as:

	Print(“Enter your guess (0 - 9) : ”)
	Sync()
	Sleep(2000)
	guess = GetButtonEntry()
	while guess < 0 or guess > 9
		 Print(“Your guess must be between 0 and 9”)
		 Print(“Enter your guess again(0 - 9) : ”)
		 Sync()
		 Sleep(2000)
		 guess = GetButtonEntry()
	endwhile

FIG-5.2

How while..
endwhile Operates

Earlier Statements

Later Statements

1
 is testedcondition

2 - option 1
if is true,

the loop body statements
are executed

condition

After the loop body
has been executed, the program

returns to the start of the loop
and is retested condition

2 - option 2
if is false,

the program jumps to the
end of the loop

condition

...

while condition

statements

endwhile

The test guess < 0 is not
required since the function
GetButtonEntry() does
not allow negative values
to be entered. However,
the condition has been
included so that, should
GetButtonEntry() ever be
modified to allow entry of
negative values, the while
loop will catch any values
less than zero.

126� Hands On AGK BASIC: Iteration

The repeat..until Construct
Like structured English, AGK BASIC has a repeat..until statement. The two
structures are identical. Hence, if in structured English we write

	 Set total to zero	
	 REPEAT
		 Get a number
		 Add number to total
	 UNTIL number is zero

then the same logic would be coded in AGK BASIC as

	total = 0
	repeat
		 number = GetButtonEntry()
		 total = total + number
	until number = 0

The repeat..until statement is an exit-controlled loop structure. That is, the action
within the loop is executed and then an exit condition is tested. If that condition is
found to be true, then looping stops, otherwise the statements specified within the
loop are executed again. Iteration continues until the exit condition is true.
The syntax of the REPEAT statement is shown in FIG-5.3.

The code assumes
we are using the
Button routines
introduced in the
previous chapter to
accept input.

FIG-5.3

repeat..until

repeat

condition

statement

until

Activity 5.1

Modify your Dice project to incorporate the code given above. Check that the
program works correctly by attempting to make guesses which are outside the
range 0 to 9. Resave your project.

Activity 5.2

A simple dice game involves counting how many times in a row a pair of dice
can be thrown to produce a value of 8 or less. The game stops as soon as a
value greater than 8 is thrown.

Create a new project, DiceCount, which implements the following logic:

	 Set count to zero
	 Throw the two dice
	 Display dice values
	 WHILE the sum of the two dice <= 8 DO
		 Add 1 to count
		 Throw the two dice
		 Display dice values
	 ENDWHILE
	 Display “You had a run of “ , count, “throws”

Test and save your program.

Hands On AGK BASIC: Iteration� 127

where:

	 condition 		 is a Boolean expression and may include and, or, not and
				 parentheses as required.

	 statement 		 is any valid AGK BASIC statement.

The operation of the repeat .. until construct is shown graphically in FIG-5.4.

Earlier Statements

Later Statements

2
 is testedcondition

repeat

condition

statements

until

1
Statements

in the loop body
are executed

3 - option 1
condition true:

exit loop3 - option 2
condition false:
return to start

of loop

FIG-5.4

How repeat..until
Operates

Activity 5.3

Create a new project, Total, to read in a series of integer values, stopping only
when a zero is entered. The values entered should be totalled and that total
displayed at the end of the program. Use the Buttons routines to accept input.

Use the following logic:

	 Set total to zero
	 REPEAT
		 Get a number
		 Add number to total
	 UNTIL number is zero
	 Display total

Test and save your project.

128� Hands On AGK BASIC: Iteration

The for..next Construct
In structured English, the FOR loop is used to perform an action a specific number
of times. For example, we might describe dealing seven cards to a player using the
logic:

	 FOR 7 times DO
		 Deal card
	 ENDFOR

Sometimes the number of times the action is to be carried out is less explicit. For
example, if each player in a game is to pay a £10 fine, we could write:

	 FOR each player DO	
	 	 Pay £10 fine
	 ENDFOR

However, in both examples, the action specified between the FOR and ENDFOR
terms will be executed a known number of times.

In AGK BASIC the for construct makes use of a variable to keep a count of how
often the loop is executed and the first line of the structure takes the form:

	for variable = start_value to finish_value

Hence, if we want a for loop to iterate 7 times we would write

	for c = 1 to 7

In this case c would be assigned the value 1 when the for loop is about to start. Each
time the statements within the loop are completed, c will be incremented, and
eventually, when c is equal to 7 and the loop body has been executed, iteration stops.

The variable used in a for loop is known as the loop counter.

While structured English marks the end of a FOR loop using the term ENDFOR, in
AGK BASIC the end of the loop is indicated by the term next followed by the name
of the loop counter variable used in the for statement. For example, the code

	for k = 1 to 10
		 Print(“*”)
	next k
	Sync()

Activity 5.5

Write the first line of a for loop that is to be executed 10 times, using a
variable j as the loop counter. The starting value of j should be 1.

Activity 5.4

Modify Dice to allow the player to keep guessing until the correct number is
arrived at.

Test and save your project.

Hands On AGK BASIC: Iteration� 129

contains a single statement within the loop body and will display a column of 10
asterisks.

The loop counter in a for loop can be made to start and finish at any value, so it is
quite valid to start a loop with the line:

	for m = 3 to 12

The loop counter m will contain the value 3 when the loop is first executed and 12
when the final execution is complete. The loop will be executed exactly 10 times.

If the start and finish values are identical, as in the line

	for r = 10 to 10

 then the loop is executed once only.

Where the start value is greater than the finish value, the loop will not be executed at
all so the code within the loop body will be ignored. Such a result would be produced
from the line

	for k = 10 to 9

Normally, 1 is added to the loop counter each time the loop body is performed.
However, we can change this by adding a step value to the for loop as in the example
shown below:

	for c = 2 to 10 step 2

In this last example the loop counter, c, will start at 2 and then increment to 4 on the
next iteration. The program in FIG-5.5 uses the step option to display the 7 times
table from 1 x 7 to 12 x 7.

Activity 5.6

What would be displayed by the code

	 for p = 1 to 10
	 	 Print(p)
	 next p
	 Sync()

FIG-5.5

7 Times Table

rem *** 7 Times Table ***

rem *** Display title ***
Print(“7 Times Table”)
Print(“”)
rem *** Display the table values ***
for c = 7 to 84 step 7
 Print(c)
next c
Sync()
do
loop

130� Hands On AGK BASIC: Iteration

By using the step keyword with a negative value, it is even possible to create a for
loop that reduces the loop counter on each iteration as in the line:

	for d = 10 to 0 step -1

This last example causes the loop counter to start at 10 and finish at 0.

It is possible that the step value given may cause the loop counter never to match the
finish value. For example, in the line

	for c = 1 to 12 step 5

the variable c will take on the values 1, 6, and 11. The loop body will not be executed
when the loop counter passes the finishing value (12, in this case) and the looping
will stop.

The start, finish and even step values of a for loop can be defined using a variable or
arithmetic expression, as well as a constant. For example, in FIG-5.6 below the user
is allowed to enter the upper limit of the for loop.

The program will display every integer value between 1 and the number entered by
the user. If this involves many numbers being displayed, there will not be space
within the app window to show them all at the same time. Therefore, the program
displays one number at a time with 0.2 secs delay between each value.

Activity 5.8

Modify Tables so that the 12 times table is displayed with the highest value
first. That is, starting with 144 and finishing with 12.

FIG-5.6

Using a Variable in a
for..next Statement

#include “Buttons.agc”

SetUpButtons()
rem *** Get a number ***
Print(“Enter upper limit”)
Sync()
Sleep(2000)
num = GetButtonEnrty()
rem *** Display values between 1 and num ***
for c = 1 to num
	 Print(c)
	 Sync()
	 Sleep(200)
next c
do
loop

Activity 5.7

Start a new project, Tables, that implements the code shown in FIG-5.5.

Test the program.

Modify the program so that it displays the 12 times table from 1 x 12 to 12 x
12.

Hands On AGK BASIC: Iteration� 131

The for loop counter can also be specified as a real value with a step value which is
not a whole number. For example:

	for ch# = 1.0 to 2.0 step 0.1
		 Print(ch#)	
	next ch#
	Sync()

Notice that most of the values displayed by the last Activity are slightly out. For
example, instead of the second value displayed being 1.1, it displays as 1.10000002384.

This difference is caused by rounding errors when converting from the decimal
values that we use to the binary values favoured by the computer.

Although we might have expected the for loop to perform 11 times (1.0,1.1,1.2, etc.
to 2.0), in fact, it only performs 10 times up to 1.90000021458. Again, this discrepancy
is caused by the rounding error problem.

The format of the for..next construct is shown in FIG-5.7.

where:

	 variable 	 is either an integer or real variable. Both variable	 tiles in the
			 diagram refer to the same variable. Hence, the name used after 	

Activity 5.10

Create a project, ForReal, which includes the code given above and check out
the result.

ËË The latest version
of AGK no longer
displays values to 11
decimal places; only
6, so the rounding
errors are no longer
visible but still occur
internally.

Activity 5.11

Modify ForReal so that the upper limit of the loop is 2.01.

How many times is the iteration performed now?

FIG-5.7

for..next

for variable value1

next

= to value2 []step value3

statement

variable

Activity 5.9

Start a new project, OneTo, containing the code given in FIG-5.6. (Remember
you have to include the three Buttons files in your project folder).

Modify the program so that the user may also specify the starting value of the
for loop.

Change the program a second time so that the user can specify a step size for
the for loop.

Test each version of the program.

132� Hands On AGK BASIC: Iteration

				 the keywords for and next must be the same. This
				 variable is known as the loop counter.

	 value1			 is the initial value of the loop counter. The loop counter
				 will contain this value the first time the statements within
				 the loop are executed.

	 value2 		 is the final value of the loop variable. The loop variable
	 			 will usually contain this value the last time the loop body
				 is executed.

	 value3 		 is the value to be added to the loop counter after each
				 iteration. If this is omitted then a value of 1 is added
 				 to the loop counter.

	 statement		 is any valid AKG BASIC statement.

The operation of the for..next statement is shown graphically in FIG-5.8.

FIG-5.8

How for..next
Operates

for variable value1

next

= to value2 []step value3

statement

variable

1
value1 is copied

to variable

2
variable compared

to value2

3 (option 2)
(variable not

passed value2)

Loop statements
executed

3 (option 1)
(variable passed

 value2)

Loop exits

4
value3 added

to variable

(if value3 omitted,
1 added to variable)

Activity 5.12

Create a new project, InTotal, which reads in and displays the total of 6
numbers. Make use of the Buttons files for input.

Test and save your project.

Hands On AGK BASIC: Iteration� 133

Finding the Smallest Value in a List of Values
There are several tasks that will crop up over and over again in your programs. One
of these is finding the smallest value in a list of numbers. This is a trivial enough task
for our own brains as long as the list is short enough to be taken in at a glance, but if
asked how you managed to come up with the correct answer, you might struggle to
give a verbal description of the strategy you used.

Now, let’s imagine you wanted to record the coldest temperature achieved in your
area during the current year. Since this involves a longer list of data which also takes
a full year to access, you would have to come up with an organised way of getting
the information you want. Perhaps you would write down the lowest temperature on
January 1st and then check each day to see if a lower temperature has been achieved.
When a lower temperature does occur, you can erase the previous record and write
down this new temperature. By the end of the year your record would show the
lowest temperature achieved during the year.

This is exactly how we tackle the same type of problem in a computer program. We
set up one variable to hold the smallest value we’ve come across so far and if a later
value is smaller, it is copied into this variable. The algorithm used is given below and
assumes 7 numbers will be entered in total:

	 Get first number
	 Set smallest to first number	
	 FOR 6 times DO
		 Get next number
		 IF number < smallest THEN
			 Set smallest to number
		 ENDIF
	 ENDFOR
	 Display smallest

Activity 5.14

Create a new project called Smallest.

In this program implement the logic shown above to display the smallest of 5
integer values entered.

Modify the program to find the largest, rather than the smallest, of the numbers
entered. Save your project.

Activity 5.13

Start a new project called Shades.

Code a program which uses a for loop with a start value of 0 and finish of 255.

Inside the loop, execute a SetClearColor() statement and use the value of
the loop counter as the red parameter to the statement. The green and blue
parameter values for the SetClearColor() statement should both be zero.

Add a delay (using Sleep()) of 20 milliseconds between each iteration of the
loop.

Test and save your project.

134� Hands On AGK BASIC: Iteration

The exit Statement
The exit statement is used to terminate the loop currently being executed. The next
statement to be executed after an exit command is the statement immediately after
the end of the loop. The exit statement takes the form shown in FIG-5.9.

Normally, the exit statement will appear within an if statement.

Let’s look at an example where the exit statement might come in useful. In a dice
game we are allowed to throw a pair of dice 5 times and our score is the total of the
five throws. However, if during our throws we throw a 1, then, according to the rules
of the game, our turn ends and our final score becomes the total achieved up to that
point (excluding the throw containing a 1). We could code this game as shown in
FIG-5.10.

FIG-5.9

The exit Statement exit

FIG-5.10

Using exit

rem *** set total to zero ***
total = 0
rem *** for 5 times do ***
for c = 1 to 5
	 	 rem *** Display roll number ***
	 	 PrintC(“Roll number “)
	 	 Print(c)
	 	 Sync()
	 	 Sleep(1000)
	 	 rem *** throw both dice ***
	 	 dice1 = Random(1,6)
	 	 dice2 = Random(1,6)
	 	 rem *** display throw number and dice values ***
	 	 PrintC(“dice 1 : “)
	 	 PrintC(dice1)
	 	 PrintC(” dice 2 : “)
	 	 Print(dice2)
	 	 Sync()
	 	 Sleep(4000)
	 	 rem *** if either dice is a 1 then quit loop ***
	 	 if dice1 = 1 or dice2 = 1
	 	 	 exit
		 endif
	 	 rem *** add dice throws to total ***
	 	 total = total + dicel + dice2
	 next c
	 rem *** display final score ***
	 PrintC(“your final score was : ”)
	 Print(total)
	 Sync()
	 do
	 loop

Activity 5.15

Create a new project call SumDice. Delete the existing code in main.agc and
enter the program given in FIG-5.10.

Run the program and check that the loop exits if a 1 is thrown.

Modify the program to exit only if both dice show a 1.

Hands On AGK BASIC: Iteration� 135

The do .. loop Construct
The do..loop construct is a rather strange loop structure, since, while other loops are
designed to terminate eventually, the do .. loop structure will continue to repeat the
code within its loop body indefinitely.

The default code that exists when we begin a new project makes use of this loop
structure to continually display the words Hello world - the traditional text for a first
program.

When a do loop is executing, then, under normal circumstances, the program will
only terminate when forced to do so by an external event. In all our projects so far,
the external event has been the operating system closing down our program in
response to our clicking on the X button at the top-right of the app window.
Alternatively, an exit statement can be included within the loop to allow the loop to
be exited when a given condition occurs.

As we write more complex programs you will begin to understand why a do loop is
so often needed to get the game to run smoothly.

The do..loop structure takes the format shown in FIG-5.11.

Nested Loops
A common requirement within a program is to place one loop control structure within
another. This is known as nested loops. For example, to input six game scores (each
between 0 and 100) and then calculate their average, the logic required is:

	 1.	 Set total to zero
	 2.	 FOR 6 times DO
	 3.		 Get valid score
	 4.		 Add score to total
	 5.	 ENDFOR
	 6.	 Calculate average as total / 6
	 7.	 Display average

This appears to have only a single loop structure beginning at statement 2 and ending
at statement 5. However, if we add detail to statement 3, this gives us

	 3. Get valid score
		 3.1	Read score
		 3.2	WHILE score is invalid DO
		 3.3		 Display “Score must be between 0 to 100”
		 3.4		 Read score
		 3.5	ENDWHILE

which, if placed in the original solution, results in a nested loop structure, where a
while loop appears inside a for loop:

	 1.	 Set total to zero
	 2.	 FOR 6 times DO
	 3.1		 Read score

FIG-5.11

do..loop

do

statement

loop

136� Hands On AGK BASIC: Iteration

	 3.2		 WHILE score is invalid DO
	 3.3			 Display “Score must be between 0 to 100”
	 3.4			 Read score
	 3.5		 ENDWHILE
	 4.		 Add score to total
	 5.	 ENDFOR
	 6.	 Calculate average as total / 6
	 7.	 Display average

s

Nested for Loops
A very common example of nested loops are nested for loops. And, although
someone new to programming can sometimes have difficulties with the concept, its
actually easy enough to see real world examples of how nested for loops work.

Next time you are out in the car, have a look at the odometer (that’s the one that tells
you how many miles/kilometres the car has done). Now, look at the right two digits
of the odometer. As you travel along you’ll see the far right hand digit move slowly
until it reaches 9; at that point it returns to zero and the digit to its left increments
before the whole process repeats itself. You’ll see the same sort of thing on a digital
clock.

The code in FIG-5.12 emulates those last two digits on the odometer. Initially, they
are set to 00 and then move onto 01, 02 ... 09,10,11, etc

The tens loop is known as the outer loop, while the units loop is known as the inner
loop.

A few points to note about nested for loops:

±	The inner loop increments fastest.

±	Only when the inner loop is complete does the outer loop variable increment.

±	The inner loop counter is reset to its starting value each time the outer loop
counter is incremented.

Activity 5.16

Turn the above algorithm into an AKG BASIC project, AverageScore, using
the Buttons files to allow input.

Run and test the program, making sure it operates as expected.

FIG-5.12

Nested for loops Rem *** Nested for loop ***

for tens = 0 to 9
 for units = 0 to 9
 PrintC(tens)
 PrintC(“ “)
 Print(units)
 Sync()
 Sleep(200)
 next units
next tens
do
loop

Hands On AGK BASIC: Iteration� 137

Testing Iterative Code
We need a test strategy when looking for errors in iterative code. Where possible, it
is best to create at least three sets of values:

±	Test data that causes the loop to execute zero times.

±	Test data that causes the loop to execute once.

±	Test data that causes the loop to execute multiple times.

For example, in Dice we added statements to ensure that the guess entered was in the
range 0 to 9 using the following code:

	guess = GetButtonEntry()
	while guess < 0 or guess > 9
		 Print(“Your guess must be between 0 and 9”)
		 Print(“Enter your guess again(0 - 9) : ”)
		 Sync()
		 Sleep(2000)
		 guess = GetButtonEntry()
	endwhile

To test the while loop in this code we could use the test data shown in FIG-5.13.

The while loop is only executed if guess is outside the range 0 to 9, so Test 1, which
uses a value inside that range, will skip the while loop body giving zero iterations.

Test 2 starts with an invalid value (10) for guess, causing the while loop body to be
executed, and then uses a valid value (5). This loop is therefore exited after only one
iteration.

FIG-5.13

Test Data

Test No. guess
1

3
2

7
10, 5

18, 12, 3

Activity 5.17

Start a new project, NestedFor, and code the program to match FIG-5.12.
Test and save your project.

Activity 5.18

What would be output by the following code?

	 for no1 = -2 to 1
	 	 for no2 = 0 to 3
	 	 	 PrintC(no1)
	 	 	 PrintC(“ “)
	 	 	 Print(no2)
	 	 	 Sync()
	 	 	 Sleep(200)
	 	 next no2
	 next no1

138� Hands On AGK BASIC: Iteration

Test 3 uses two invalid values (18 and 12) before entering a valid value (3), causing
the while loop body to execute twice.

There will be cases where using all three tests strategies are not possible. For example,
a repeat loop cannot execute zero times and, in this case, we have to satisfy ourselves
with single and multiple iteration tests.

A for loop, when written for a fixed number of iterations can only be tested for that
number of iterations. So a loop beginning with the line

	 for c = 1 to 10

can only be tested for multiple iterations (10 iterations, in this case), the exception
being if the loop body contains an exit statement, in which case zero and one
iteration tests may also be possible by supplying values which cause the exit
statement to be terminated during the required iteration.

A for loop which is coded with a variable upper limit as in

	for c = 1 to max

may be fully tested by making sure max has the values 0, 1, and more than 1 during
testing.

Activity 5.19

The following code is meant to calculate the average of a sequence of numbers.
The sequence ends when the value zero is entered. This terminating zero is not
considered to be one of the numbers in the sequence.

	 total = 0
	 count = 0
	 Print(“Enter number (0 to stop)”)
	 Sync()
	 Sleep(2000)
	 num = GetButtonEntry()
	 while num <> 0
	 	 total = total + num
	 	 count = count + 1
	 	 Print(“Enter number (0 to stop)”)
	 	 Sync()
	 	 Sleep(2000)
	 	 num = GetButtonEntry()
	 endwhile
	 average = total / count
	 PrintC(“Average is “)
	 Print(average)
	 Sync()
	 do
	 loop

Make up a set of test values (similar in construct to FIG-5.13) for the while
loop in the code.

Create a new project, Average, containing the code given above and use the test
data to find out if the code functions correctly.

Hands On AGK BASIC: Iteration� 139

A do loop can only be tested for zero and one iterations if it contains an exit statement.

Summary
±	AGK BASIC contains four iteration constructs:

		 while .. endwhile
		 repeat .. until
		 for .. next
		 do .. loop

±	The while..endwhile construct executes a minimum of zero times and exits
when the specified condition is false.

±	The repeat..until construct executes at least once and exits when the
specified condition is true.

±	The for..next construct is used when iteration has to be done a specific
number of times.

±	A step size may be included in the for statement. The value specified by the
step term is added to the loop counter on each iteration.

±	If no step size is given in the for statement, a value of 1 is used.

±	for loops counters can be integer or real.

±	The start, finish and step values in a for loop can be defined using variables or
arithmetic expressions.

±	If the start value is equal to the finish value, a for loop will execute only once.

±	If the start value is greater than the finish value and the step size is a positive
value, a for loop will execute zero times.

±	Using the do..loop structure creates an infinite loop.

±	The exit statement can be used to exit from any loop.

±	One loop structure can be placed within another loop structure. Such a
structure is known as a nested loop.

±	Loops should be tested by creating test data for zero, one and multiple
iterations during execution whenever possible.

140� Hands On AGK BASIC: Iteration

Solutions
Activity 5.1

Modified code for Dice:
rem *** Dice program ***
rem *** Simulates the roll of a 10-sided dice ***

rem *** include Buttons***
#include “Buttons.agc”

rem *** Display buttons ***
SetUpButtons()
rem *** Throw dice ***
dice = Random(0,9)
rem *** Display prompt ***
Print(“Guess what my number is “)
Sync()
Sleep(2000)
rem *** Get a value ***
guess = GetButtonEntry()
while guess < 0 or guess > 9
	 	 Print(“your guess must be between 0 and 9”)
	 	 Print(“Enter your guess again(0 - 9) : “)
	 	 Sync()
	 	 Sleep(2000)
	 	 guess = GetButtonEntry()
	 endwhile
rem *** Display message ***
diff = dice - guess
if diff > 2
 Print(“You guess is too low”)
else
 if diff > 0
 Print(“Your guess is slightly too low “)
 else
 if diff = 0
 Print(“Correct”)
 else
 if guess > -2
 Print(“Your guess is slightly too
							 high”)
 else
 Print(“Your guess is too high”)
 endif
 endif
 endif
endif
rem *** Display values ***
PrintC(“My number was : “)
Print(dice)
PrintC(“Your guess was : “)
Print(guess)
Sync()
do
loop

Activity 5.2
Code for DiceCount:

rem *** Count dice run ***

rem *** Set count to zero ***
count = 0
rem *** Throw dice ***
dice1 = Random(1,6)
dice2 = Random(1,6)
rem *** display dice values ***
PrintC(dice1)
PrintC(“ “)
Print(dice2)
Sync()
Sleep(500)
rem *** Keep going while total is less than 9 ***
while dice1 + dice2 <= 8
 rem *** add 1 to count ***
 count = count + 1
 rem *** Throw dice ***
 dice1 = Random(1,6)
 dice2 = Random(1,6)
 rem *** display dice values ***
 PrintC(dice1)
 PrintC(“ “)
 Print(dice2)

 Sync()
 Sleep(500)
endwhile
PrintC(“You had a run of “)
PrintC(count)
Print(“ throws”)
Sync()
do

loop

Activity 5.3
Set the app window dimensions to 768 wide by 1024 high.

Code for Total:

rem *** Total a sequence of numbers ***

rem *** include Buttons routines ***
#include “Buttons.agc”

rem *** Set up buttons ***
SetUpButtons()
rem *** Set total to zero ***
total = 0
rem *** Keep going until zero entered ***
repeat
 rem *** Get value ***
 no = GetButtonEntry()
 rem *** Add value to total ***
 total = total + no
until no = 0
rem *** Display total ***
PrintC(“Total = “)
Print(total)
Sync()
do
loop

Activity 5.4
Modified code for Dice (remember to indent all the code
between the repeat and until terms):

rem *** Dice program ***
rem *** Simulates the roll of a 10-sided dice ***

rem *** include Buttons***
#include “Buttons.agc”

rem *** Display buttons ***
SetUpButtons()
rem *** Throw dice ***
dice = Random(0,9)
repeat
 rem *** Display prompt ***
 Print(“Guess what my number is “)
 Sync()
 Sleep(2000)
 rem *** Get a value ***
 guess = GetButtonEntry()
 while guess < 0 or guess > 9
	 	 	 Print(“your guess must be between 0 and 9”)
	 	 	 Print(“Enter your guess again(0 - 9) : “)
	 	 	 Sync()
	 	 	 Sleep(2000)
	 	 	 guess = GetButtonEntry()
	 endwhile
 rem *** Display message ***
 diff = dice - guess
 if diff > 2
 Print(“You guess is too low”)
 else if diff > 0
 Print(“Your guess is slightly too low “)
 else if diff = 0
 Print(“Correct”)
 else if diff >= -2
 Print(“Your guess is slightly too high”)
 else
 Print(“Your guess is too high”)
 endif endif endif endif
until guess = dice

rem *** Display values ***
PrintC(“My number was : “)
Print(dice)
PrintC(“Your guess was : “)

Hands On AGK BASIC: Iteration� 141

Print(guess)
Sync()
do
loop

Activity 5.5
for j = 1 to 10

Activity 5.6
This code would display the values 1 to 10.

Activity 5.7
Modified code for Tables (12 times table):

rem *** 12 Times Table ***

rem *** Display title ***
Print(“12 Times Table “)
Print(“”)
rem *** Display the table values ***
for c = 12 to 144 step 12
 Print(c)
next c
Sync()
do

loop

Activity 5.8
Modified version of Tables:

rem *** 12 Times Table ***

rem *** Display title ***
Print(“12 Times Table “)
Print(“”)
for c = 144 to 12 step -12
 Print(c)
next c
Sync()
do

loop

Activity 5.9
Code for OneTo:

rem *** Display all values in a range ***

rem *** include Buttons functions ***
#include “Buttons.agc”

rem *** Set up buttons ***
SetUpButtons()
rem *** Get limit ***
Print(“Enter the upper limit”)
Sync()
Sleep(2000)
num = GetButtonEntry()
rem *** Display numbers 1 to num ***
for c = 1 to num
 Print(c)
 Sync()
 Sleep(200)
next c
do
loop

Start value version of OneTo:
rem *** Display all values in a range ***

rem *** include Buttons functions ***
#include “Buttons.agc”

rem *** Set up buttons ***
SetUpButtons()
rem *** Get lower limit ***
Print(“Enter the lower limit”)
Sync()
Sleep(2000)
start = GetButtonEntry()

rem *** Get upper limit ***
Print(“Enter the upper limit”)
Sync()
Sleep(2000)
num = GetButtonEntry()
rem *** Display numbers start to num ***
for c = start to num
 Print(c)
 Sync()
 Sleep(200)
next c
do
loop

Step size version of OneTo:
rem *** Display values in a range ***

rem *** include Buttons functions ***
#include “Buttons.agc”

rem *** Set up buttons ***
SetUpButtons()
rem *** Get lower limit ***
Print(“Enter the lower limit”)
Sync()
Sleep(2000)
start = GetButtonEntry()

rem *** Get upper limit ***
Print(“Enter the upper limit”)
Sync()
Sleep(2000)
num = GetButtonEntry()
rem *** Get step size ***
Print(“Enter the step size”)
Sync()
Sleep(2000)
increment = GetButtonEntry()
rem *** Display numbers start to num ***
for c = start to num step increment
 Print(c)
 Sync()
 Sleep(200)
next c
do
loop

Activity 5.10
Code for ForReal:

rem *** Display values from 1 to 2 ***
for ch# = 1.0 to 2.0 step 0.1
 Print(ch#)
 Sync()
 Sleep(200)
next ch#
do
loop

Notice that the values displayed are 1.0 to 1.9.

Activity 5.11
Modified version of ForReal:

rem *** Display values from 1 to 2 ***
for ch# = 1.0 to 2.1 step 0.1
 Print(ch#)
 Sync()
 Sleep(200)
next ch#
do
loop

The display now runs from 1.0 to 2.0.

Activity 5.12
Code for InTotal:

rem *** Total input values ***

rem *** Include button functions ***
#include “Buttons.agc”

142� Hands On AGK BASIC: Iteration

rem *** Set up buttons ***
SetUpButtons()
rem *** Set total to zero ***
total = 0
rem *** Read and sum 6 numbers ***
for c = 1 to 6
 Print(“Enter number”)
 Sync()
 Sleep(1000)
 no = GetButtonEntry()
 total = total + no
next c
PrintC(“Total = “)
Print(total)
Sync()
do
loop

Activity 5.13
Code for Shades:

rem *** Display all shades of red ***
rem *** Set red intensity to ***
rem *** range from 0 to 255
for red = 0 to 255
 SetClearColor(red,0,0)
 Sync()
 Sleep(20)
next red
do

loop

Activity 5.14
Code for Smallest:

rem *** Find Smallest Number Entered ***

rem *** Include Button functions ***
#include “Buttons.agc”

rem *** Display buttons ***
SetUpButtons()
rem *** Get first number ***
Print(“Enter number “)
Sync()
Sleep(2000)
no = GetButtonEntry()
rem *** Set smallest to first number ***
smallest = no
rem *** FOR 4 times DO ***
for c = 1 to 4
 rem *** Get next number ***
 Print(“Enter number “)
 Sync()
 Sleep(1000)
 no = GetButtonEntry()
 rem *** If number smaller, record it ***
 if no < smallest
 smallest = no
 endif
next c
rem *** Display smallest value ***
PrintC(“Smallest value entered was “)
Print(smallest)
Sync()
do
loop

Modified version of Smallest:
rem *** Find Largest Number Entered ***

rem *** Include Button functions ***
#include “Buttons.agc”

rem *** Display buttons ***
SetUpButtons()
rem *** Get first number ***
Print(“Enter number “)
Sync()
Sleep(2000)
no = GetButtonEntry()
rem *** Set largest to first number ***
largest = no
rem *** FOR 4 times DO ***
for c = 1 to 4

 rem *** Get next number ***
 Print(“Enter number “)
 Sync()
 Sleep(1000)
 no = GetButtonEntry()
 rem *** If number larger, record it ***
 if no > largest
 largest = no
 endif
next c
rem *** Display largest value ***
PrintC(“Largest value entered was “)
Print(largest)
Sync()
do

loop

Activity 5.15
Modified version of SumDice:

rem *** Total dice throws ***

rem *** set total to zero ***
total = 0
rem *** for 5 times do ***
for c = 1 to 5
 rem *** Display roll number ***
	 PrintC(“Roll number “)
	 Print(c)
	 Sync()
	 Sleep(1000)
	 rem *** throw both dice ***
	 dice1 = Random(1,6)
	 dice2 = Random(1,6)
	 rem *** display throw number and dice values ***
	 PrintC(“dice 1 : “)
	 PrintC(dice1)
	 PrintC(“ dice 2 : “)
	 Print(dice2)
	 Sync()
	 Sleep(2000)
	 rem *** if either dice is a 1 then quit loop ***
	 if dice1 = 1 and dice2 = 1
	 	 exit
	 endif
	 rem *** add dice throws to total ***
	 total = total + dicel + dice2
next c
rem *** display final score ***
PrintC(“Your final score was : “)
Print(total)
Sync()
do
loop

Activity 5.16
rem *** Display average of 6 scores ***

rem *** Include Button functions ***
#include “Buttons.agc”

rem *** Display buttons ***
SetUpButtons()
rem *** Set total to zero ***
total = 0
rem *** FOR 6 times DO ***
for c = 1 to 6
 rem *** Get valid score ***
 Print(“Enter score “)
 Sync()
 Sleep(2000)
 score = GetButtonEntry()
 while score < 0 or score > 100
 Print(“Score must lie between 0 and 100”)
 Print(“Enter score “)
 Sync()
 Sleep(2000)
 score = GetButtonEntry()
 endwhile
 rem *** Add score to total ***
 total = total + score
next c
rem *** Calculate average ***
average = total/6
rem *** Display average ***

Hands On AGK BASIC: Iteration� 143

PrintC(“Average = “)
Print(average)
Sync()
do

loop

Activity 5.17
No solution required.

Activity 5.18
The output would be:

	 -2 0
	 -2 1
	 -2 2
	 -2 3
	 -1 0
	 -1 1
	 -1 2
	 -1 3
	 0 0
	 0 1
	 0 2
	 0 3
	 1 0
 	 1 1
	 1 2
	 1 3

On the computer screen, all output would occur on the same
line with a slight delay between each set of values.

Activity 5.19
The code contains a while loop so we need to create three
sets of test data to allow zero, one and more than one
iteration of the loop.

Possible test values are:
		 num		 Expected Results
				 (for average)

Test 1		 0		 0	
Test 2		 8,0		 8
Test 3		 12,6,0		 9

Code for Average:

rem *** Calculate average of values entered ***

rem *** Include Button functions ***
#include “Buttons.agc”

rem *** Set up buttons ***
SetUpButtons()

total = 0
count = 0
Print(“Enter number (0 to stop)”)
Sync()
Sleep(2000)
num = GetButtonEntry()
while num <> 0
	 total = total + num
	 count = count + 1
	 Print(“Enter number (0 to stop)”)
	 Sync()
	 Sleep(2000)
	 num = GetButtonEntry()
endwhile
average = total / count
PrintC(“Average is “)
Print(average)
Sync()
do
loop

When we run the program with the test data, it turns out that
all the results are as we expected.

However, this is more by good fortune than the fact that the
code is foolproof.

The line
	 average = total/count

would, in most languages, cause the program to crash when
we did the first test. This is because count would have the
value zero and hence the calculation would cause a division
by zero error. However, as we saw back in Chapter 3, AGK
BASIC returns zero when division by zero is performed - just
the answer we want!

However, you really should guard against this problem. For
example, if you were to rewrite your code in C++, then that
division by zero calculation would cause a crash.

We can solve the problem by changing the code to
	 if count = 0
	 	 average = 0
	 else
	 	 average = total / count
	 endif

144� Hands On AGK BASIC: Iteration

Hands On AGK BASIC: Resources� 145

In this Chapter:

T Introducing Images

T Introducting Sprites

T Sound

T Music

T Introducing Text

T	Introducing User Interaction

Resources - A First Look

Hands On AGK BASIC: Resources� 146

Resources - A First Look

Introduction
Any additional visual components or files that we make use of within an AGK project
are known as resources. Typical resources are: images, sounds, music, sprites,
buttons and even text.

Every resource is assigned an integer ID value. No two resources of the same type
may have the same ID. However, resources of different types may share the same ID.
So, it’s okay for an image, say, to have an ID of 1 and a sound resource to also have
an ID of 1.

A resource’s ID can be chosen by the programmer or automatically by the program
itself.

Any separate files required by a resource must be copied into the project’s media
folder.

Images
Image Formats

The type of image you create using your camera or download from the web is a
bitmap image. A bitmap image is constructed from a series of coloured dots known
as pixels. You have probably come across this term before, since the resolution of any
screen or camera is usually quoted in pixels. For example, the Apple iPad 1 & 2
screen has a resolution of 768 pixels by 1024 pixels.

The more pixels an image contains, the more detail it will hold. Therefore, we often
talk about the resolution of an image as being its size in pixels. Many cameras can
easily obtain image resolutions of over 4000 by 3000 pixels.

The other simple way to create a bitmap image is to use a paint package such as
Adobe Photoshop or even the modest Paint program included with Microsoft
Windows.

Many painting packages can resize images. This allows you to shrink or expand the
number of pixels in an image. Decreasing the size of an image means that some of
the details that were in the original image will be lost. On the other hand, increasing
an image’s size cannot create detail that was not there in the original and can often
make the enlarged image look fuzzy and slightly out of focus.

Image files can be stored in many formats. Some formats will save an exact copy of
the original image (known as lossless formats) but others lose a small amount of the
original’s detail (lossy formats). This second option doesn’t sound like a great idea,
but the reason such formats are popular - in fact, the most widely used of all - is
because these lossy formats use compression techniques to create much smaller files.
A lossy image can be stored in a file that is only 10% or even 5% of the lossless file
equivalent.

AGK BASIC recognises three image file formats. These are: BMP, PNG and JPG.
BMP and PNG are lossless file formats and so should only be used for relatively
small images; perhaps character figures and other visual components of a game. JPG

147� Hands On AGK BASIC: Resources

is a lossy format and is ideal for use with photographs and larger graphics. The degree
of compression used when saving a file in JPG format can be specified. Less
compression means a better quality image but a larger file.

Image Transparency

Images are always rectangular in shape. So how do you create a game that displays
a football or a spaceship or anything else that isn’t rectangular? All we need to do is
make part of the image transparent. In AGK, there are two methods of achieving
transparent areas within a displayed image. One option is to make black areas within
an image invisible on the screen (see FIG-6.1).

However, there are three things to be careful of when using this option:

±	Only pixels which are truly black (red, green and blue intensities = 0) are made
invisible. Part of the image which look black to you may not be completely
black and therefore will not appear transparent when displayed.

±	You have to make sure that no part of the image that should remain visible
contains black pixels.

±	A final, and perhaps more subtle problem, is caused by anti-aliasing.

Anti-aliasing is an attempt by image manipulation software to blend the edges of
objects within an image in such a way as to give a smooth transition from one object
to the next. This helps hide the pixelated nature of a digital image and in most cases
improves the image. However, it can cause havoc when trying to create a transparent
background. When anti-aliasing has been used in an image, the transition from visible
area to the black invisible area will have a halo of near-black pixels and this halo will
be all too visible when your image appears on screen (see FIG-6.2).

FIG-6.1

Black Pixel
Transparency Black areas

within an image
are...

Original Image Screen Display

...transparent
when displayed on

the screen

FIG-6.2

Anti-aliasing

Halo of
dark pixels caused

by anti-aliasing

Hands On AGK BASIC: Resources� 148

To avoid the halo problem, make sure anti-aliasing is switched off when you are
creating an image. Using black pixels to produce transparency does have its
limitations. For example, it does not allow us to create semi-transparent elements
within an image.

A second option for creating transparency is to include an alpha channel in the
image itself.

We already know that an image is constructed from a sequence of pixels and that the
colour of each pixel is determined by the intensity of its red, green and blue,
components. These three colour components are sometimes referred to as the image’s
colour channels. Some image formats allow you to add a fourth channel known as
the alpha channel. This channel is a grey-scaled overlay of the image surface and
determines the transparency setting for every pixel within the image. In an area
where the alpha channel is black, the image is fully transparent; where the alpha
channel displays white, the image is opaque; and where the alpha channel is grey, the
image is translucent. The shade of grey determines the degree of translucency.

FIG-6.3 shows an image, its alpha channel and how that image looks when displayed
on screen.

The transparency is more obvious if we place a second image behind the original one
(see FIG-6.4).

BMP and PNG files both allow alpha channel information to be stored (though in
slightly different ways).

FIG-6.3

An Image with an
Alpha Channel

Original Alpha Channel Displayed Image

The alpha
channel determines

transparency

FIG-6.4

Alpha Channel
Transparency

The background
grid shows through
the transparent
parts of Image 1.

Image 1
(with alpha channel)

Image 2

Display

JPG files cannot have an
alpha channel.

149� Hands On AGK BASIC: Resources

Images in AGK
LoadImage()

If we want to display one or more images in a game, we need to start by copying the
files containing the images into the AGK project’s media folder. Next we need to
issue a command to load each image into the game itself. This is done using the
LoadImage() statement. There are two variations on this statement (see FIG-6.5).

where:

	 id 		 is an integer value specifying the ID to be assigned to the image.
			 This value must be 1 or above. No two images may have the 	
			 same ID value.

	 sfile		 is a string giving the name of the file containing the image.
			 The file must be in the media folder for this project.

	 iflag		 is an integer (0 or 1) which is used to determine how transparency
			 is handled when the image is displayed. If iflag has the value
			 zero, then the alpha channel of the image sets the transparency;
			 if the value is 1, then the alpha channel is ignored and all black
			 pixels within the image are made invisible. A value of zero is
			 assumed if this parameter is omitted.

Using the first version of this command, you need to specify the ID being assigned
to the image for the duration of the program. For example, if the first image to be
loaded is called “ball.bmp”, then we would load the image using the statement

	LoadImage(1,”ball.bmp”,1)

This will assign the ID value of 1 to the image and black pixels will be invisible.
Alternatively, we could use version 2 of the statement and write

	id = LoadImage(“ball.bmp”,1)

This time the program decides on the ID to be assigned, but IDs are assigned in
ascending order starting at 10001, so, as long as this is the first image to be loaded it
will be assigned an ID of 10001.

Using the second version guarantees that we will not attempt to assign the same ID
to two different images (which would, in any case, produce an error).

CreateSprite()

Although all images need to be loaded before they can be used, in order to see an
image on the screen, you’ll need to load that image into a sprite. To do this you need
to create a sprite and specify the image to be displayed by the sprite. This is done
using the CreateSprite() statement (see FIG-6.6).

FIG-6.5

LoadImage() ()

integer

LoadImage id
Version 1

, sfile iflag,[]
Version 2

()LoadImage sfile iflag,[]

Hands On AGK BASIC: Resources� 150

where:

	 id 		 is an integer value specifying the ID to be assigned to the sprite.
			 This value must be 1 or above. No two sprites may have the 	
			 same ID value.

	 imageId 	 is an integer value specifying the ID of the image being copied
			 into the sprite. This image must previously have been loaded
			 using a LoadImage() statement. Use 0 to create a white sprite
 	 without an image.

Like the two versions of LoadImage(), the two options in the CreateSprite()
statement allow you to choose between deciding on the ID number yourself (version
1) or letting the program decide for you (version 2 - assigned values start at 10001).

In the example we are about to create, we will assign our own ID numbers since it
uses only a single image and a single sprite. So, to create a sprite showing the ball
image, we would first load the image and then create the sprite:

	LoadImage(1,”ball.bmp”,1)
	CreateSprite(1,1)

Notice that the image and sprite have both been assigned an ID of 1. This is not a
problem since they are two different types of objects (image and sprite). Only when
you assign the same ID to two objects of the same type do you cause an error. Now
we are ready to create a program to display our first image (see FIG-6.7).

AGK has a problem with sizing the image. Since we are working with a percentage-
based screen layout, it has no idea exactly how large to make the sprite. It handles
this by assuming the physical size of the image represents the percentage required.
The ball image is 64 pixels wide by 64 pixels high, so AGK assumes you want the

()

integer

CreateSprite id
Version 1

, imageId

Version 2

()CreateSprite imageId

FIG-6.6

CreateSprite()

FIG-6.7

Displaying a Sprite

When a sprite is first
created, its top left
corner is at position
(0,0) - the top left corner
of the app window.

rem *** First Sprite ***
rem *** Load image ***
LoadImage(1,”ball.bmp”,1)
rem *** Create sprite ***
CreateSprite(1,1)
Sync()
do
loop

Activity 6.1

Create a new project called FirstSprite. Compile the default code in order to
create the project’s media folder. From the files you downloaded to accompany
this book, go to the AGKDownloads/Chapter 6 folder and copy the file ball.
bmp to the project’s media folder.

Change the contents of main.agc to match that given in FIG-6.7. Run and save
the project. What is strange about the image?

At this stage we can
think of a sprite as
nothing more than an
image which appears
on the screen. But, as
we will discover later,
there are many sprite-
related commands which
allow us to do various
operations such as move,
rotate, resize and detect
sprite collisions.

151� Hands On AGK BASIC: Resources

image to take up 64% of the width and 64% of the height of the app window.
Unfortunately, this is nowhere near the actual size we want.

SetSpriteSize()

The SetSpriteSize() statement allows use to specify the dimensions of a sprite. The
sizes are given as a percentage of the screen, or in virtual pixels, depending on the
option chosen when the program was created. The statement has the format shown in
FIG-6.8.

where:

	 id 		 is the integer value previously assigned as the ID of the sprite
			 to be resized.

	 fx		 is a real value giving the width required. This value is given as a
			 percentage of the screen width or in virtual pixels as appropriate.

	 fy		 is a real value giving the height required (percentage or virtual
			 pixels).

So, if we wanted the ball sprite to occupy only 10% of the screen, we would use the
line:

	SetSpriteSize(1,10,10)

As you can see from Activity 6.2, making the sprite 10% in both directions works
only when the app window is square. Increasing the app window height also means
an increase in the height of the sprite and our ball is no longer circular.

To solve this problem, SetSpriteSize() allows you to set the actual size of one
dimension and use the value -1 for the other. When you choose this option, AGK
works out the second dimension automatically to ensure that the sprite retains its
original shape. For example, if we set the fx parameter to 10 and fy to -1 using the
line

	SetSpriteSize(1,10,-1)

the sprite will return to its round shape.

Of course, setting the fy to 10 and fx to -1 with

	SetSpriteSize(1,-1,10)

will still result in a round ball, but it will be larger since 10% of the app window’s
height is much greater than 10% of its width (see FIG-6.9).

FIG-6.8

SetSpriteSize()

()SetSpriteSize id fx fy

Activity 6.2

Modify FirstSprite by adding the SetSpriteSize() statement given above.
Run the program and see how this changes the image displayed.

Change the height setting in setup.agc to 1024. Rerun the program. How is the
sprite affected? Save your project.

Hands On AGK BASIC: Resources� 152

 The only problem now with our sprite app is that, since the app window background
is black, we really can’t see if the black areas of the sprite are, indeed, invisible.

SetSpritePosition()

An existing sprite can be moved to a new position on the screen using the
SetSpritePosition() statement which has the format shown in FIG-6.10.

where:

	 id 		 is the integer value previously assigned as the ID of the sprite
			 to be moved.

	 fx		 is a real value giving the new x-coordinate (percentage or virtual
			 pixels).

	 fy		 is a real value giving the new y-coordinate. Measured in virtual
			 pixels or percentage.

By default, it is the top left corner of a sprite that is placed at the position specified.

Activity 6.3

Modify FirstSprite to use the -1 parameter in SetSpriteSize(). Try out both
options, making the width -1 on the first run and the height -1 on the second
run.

Save your project.

SetSpriteSize(1,-1,10)SetSpriteSize(1,10,-1)

10%
100%

100%

10%

FIG-6.9

How Sprite Size
Changes

Activity 6.4

Add a SetClearColor() statement to your FirstSprite program to create a
white background. (You’ll also need to add an extra Sync()statement.)

Are the black pixels within the ball image invisible?

Save your project.

FIG-6.10

SetSpritePosition() ()SetSpritePosition id , fx , fy

153� Hands On AGK BASIC: Resources

By placing the SetSpritePosition() statement within a for loop and using the loop
counter as a parameter, we can get the sprite to travel across the window.

SetSpriteDepth()

The program in FIG-6.11 is an extension of your FirstSprite project and demonstrates
one sprite passing “behind” another.

Activity 6.5

In FirstSprite, add a two second delay and then move the sprite to the centre of
the app window. Test and save your project.

Activity 6.6

Remove your last modification from FirstSprite and replace it with the
following code:

	 for p = 1 to 100
		 SetSpritePosition(1,p,p)
		 Sync()
		 Sleep(50)
	 next p

Test the new version of the project.

FIG-6.11

Demonstrating Sprite
Depth

rem *** Sprite Depth ***
rem *** Clear screen to white ***
SetClearColor(255,255,255)
Sync()
rem *** Load images ***
LoadImage(1,”ball.bmp”,1)
LoadImage(2,”poppy.bmp”,1)
rem *** Create ball sprite ***
CreateSprite(1,1)
SetSpriteSize(1,10,-1)
rem *** Create poppy sprite ***
CreateSprite(2,2)
SetSpriteSize(2,20,-1)
SetSpritePosition(2,50,50)
Sync()
rem *** Move sprite across the screen ***
for p = 1 to 100
 SetSpritePosition(1,p,p)
 Sync()
	 Sleep(50)
next p
do
loop

Activity 6.7

Modify your FirstSprite project to match the code given in FIG-6.11.

Test and save your project.

Hands On AGK BASIC: Resources� 154

The ball passes “behind” the poppy because the ball sprite was created before the
poppy. If we had wanted the ball to pass over the poppy, then we could have achieved
this by having created the ball sprite after the poppy sprite. But another option is
available; we can adjust the depth of a sprite using the SetSpriteDepth() statement.
Sprite depth can be set to any value from 0 to 10000.

In original hand-drawn cartoons, the overall image is made up of a layer of transparent
acetates. Different elements of the picture were drawn on different acetates. Those
elements on the top-most acetate were at the “front” and those on the bottom acetate
were at the “back”. AGK depth settings are equivalent to those acetate layers: depth
0 is at the “front”; depth 10000 is at the “back”.

 The format of the SetSpriteDepth() statement is shown in FIG-6.12.

where:

	 id 		 is the integer value previously assigned as the ID of the sprite.

	 idepth		 is an integer value giving the layer setting. A lower number will�
			 bring the sprite “forward” towards the top layer. This value can
			 be in the range 0 to 10,000.

When a sprite is created, it is assigned a default layer of 10. Sprites on the same layer
have a depth determined by the order in which they were created (as we have already
seen).

GetSpriteDepth()

To determine the current depth of a sprite, use the GetSpriteDepth() statement (see
FIG-6.13).

where:

	 id 		 is the integer value previously assigned as the ID of the sprite.

CloneSprite()

You can make a copy of a sprite using the CloneSprite() statement. This will make
an exact copy of the sprite specified. The statement’s format is shown in FIG-6.14.

where:

	 id 		 is the integer value of the ID to be assigned to the new sprite.

FIG-6.12

SetSpriteDepth()

()SetSpriteDepth id , idepth

Activity 6.8

Modify FirstSprite, assigning the ball sprite to layer 9 immediately after its
creation. How does this affect the program’s display? Save your project.

FIG-6.13

GetSpriteDepth()

()GetSpriteDepthinteger id

FIG-6.14

CloneSprite()

()CloneSprite id , idToCopy

155� Hands On AGK BASIC: Resources

	 idToCopy	 is an integer value giving the ID of the existing sprite to be
			 cloned.

Whatever characteristics have been set for the original sprite (size, transparency,
depth, etc.) will be duplicated in the clone.

SetSpriteVisible()

We can make a sprite invisible - and make it reappear - using the SetSpriteVisible()
statement which has the format shown in FIG-6.15.

where:

	 id 		 is the integer value previously assigned as the ID of the sprite.

	 ivisible	 is an integer value (0 or 1) specifying that the sprite is to be
			 hidden (0) or made visible (1).

DeleteSprite()

When a sprite is no longer required by a program, that sprite can be deleted. Although
deletion is not necessary, it does free up resources on the machine which can, in turn,
speed up your game. Sprites are deleted using the DeleteSprite() statement whose
format is shown in FIG-6.16.

where:

	 id		 is an integer value giving the ID of the sprite to be deleted.

DeleteImage()

When an image is no longer required by a sprite, or when the sprite using an image
has been deleted, then that image can be deleted, thereby freeing up further resources.
To delete an image we use the DeleteImage() statement (see FIG-6.17).

Activity 6.9

Modify FirstSprite, making a copy of the poppy sprite and positioning it at
(20,20).

Assign the new sprite a depth setting of 8. What happens as the ball passes the
two poppies? Save your project.

FIG-6.15

SetSpriteVisible()

()SetSpriteVisible id , ivisible

Activity 6.10

Modify FirstSprite so that the two poppy sprites are hidden after the ball has
moved to the bottom of the screen. Save your project.

FIG-6.16

DeleteSprite()

(DeleteSprite id)

FIG-6.17

DeleteImage()

(DeleteImage id)

Hands On AGK BASIC: Resources� 156

where:

	 id		 is an integer value giving the ID of the image to be deleted.

Deleting a resource only deletes it from the computer’s memory; the actual file
containing the resource is not affected.

There are many more sprite commands and these will be covered in later chapters.

Sound
Sound files, like image files, come in many different formats. And like those for
images, some formats are lossy, but have small file sizes, while others are lossless
with larger file sizes.

The current version of AGK will handle only uncompressed WAV sound files.

To play a sound, the file containing that sound must first be copied into the project’s
media folder. Within the program we can then load and play the file.

LoadSound()

Like images, sounds must be loaded before they can be used. This is done using the
LoadSound() statement (see FIG-6.18).

where:

	 id		 is an integer value specifying the ID to be assigned to the sound
			 file.

	 sfile	 	 is a string giving the name of the file to be loaded. This must be
			 a WAV file and must be stored in the project’s media folder.

In the first version of the statement the program chooses the ID number; in the second
version the ID value is automatically selected by AGK and returned by the statement.

PlaySound()

Once loaded, a sound file can be played using the PlaySound() statement (see FIG-
6.19).

where:

	 id		 is an integer value specifying the ID previously assigned to the
			 sound.

FIG-6.18

LoadSound() ()

integer

LoadSound id
Version 1

, sfile

Version 2

()LoadSound sfile

Automatically assigned
ID values start at 1.

FIG-6.19

PlaySound() ()PlaySound id ,[ivol ,[iloop ,[iprrty]]]

157� Hands On AGK BASIC: Resources

	 ivol		 is an integer value (0 to 100) representing the volume setting.
			 The default setting is 100.

	 iloop		 is an integer value (0 or 1) which determines if the sound is to
			 play continuously. If set to 0, the sound will play only once; if
			 set to 1, the sound will be repeated. Zero is the default value.

	 iprrty		 is an integer value which is designed to be used to set the sound’s
			 priority. This option is currently not implemented.

StopSound()

When a sound is set to play only once, it will, obviously, stop when the end of the file
is reached, but if you want playing to stop prematurely, you can do so using the
StopSound()statement. This statement has the format shown in FIG-6.20.

where:

	 id		 is an integer value giving the ID of the sound that is to be stopped.

DeleteSound()

When a sound resource is no longer required, it is best to delete that resource from
your program. This can be done using the DeleteSound() statement (see FIG-6.21
for format).

where:

	 id		 is an integer value giving the ID of the sound that is to be deleted.

SetSoundSystemVolume()

Although the volume of a specific sound is set when that sound is first loaded and
cannot be adjusted later, the system volume can be adjusted at any time using the
SetSoundSystemVolume() statement which has the format shown in FIG-6.22.

where:

	 ivol		 is an integer (0 to 100) giving the percentage volume adjustment.
 			 For example, 50 would give half volume, 100 would leave the
			 volume unchanged.

GetSoundExists()

You can check that a sound with a specific ID value currently exists using
GetSoundExists() (see FIG-6.23).

Several sound files can
be played at the same
time.

FIG-6.20

StopSound()

(StopSound id)

FIG-6.21

DeleteSound() (DeleteSound id)

(SetSoundSystemVolume ivol)
FIG-6.22

SetSoundSystemVolume()

FIG-6.23

GetSoundExists()

(GetSoundExists id)integer

Hands On AGK BASIC: Resources� 158

where:

	 id		 is an integer value giving the ID of the sound to be checked.

The statement will return 1 if a sound of the specified ID currently exists; otherwise
zero is returned.

GetSoundsPlaying()

We can also check the number of instances of a sound that are playing at the same
time. GetSoundsPlaying()returns the number of instances of a specified sound
currently in existence (see FIG-6.24).

where:

	 id		 is an integer value giving the ID of the sound whose number of
			 instances is to be returned.

GetSoundInstances()

The GetSoundsInstances()statement performs exactly the same purpose as
GetSoundsPlaying() and so the two statements are interchangeable. The statement’s
syntax is shown in FIG-6.25.

where:

	 id		 is an integer value giving the ID of the sound whose number of
			 instances is to be returned.

When the program plays a sound file it does not halt execution of the other statements
in your program while the sound is played. It merely passes the sound file details to
your sound card, leaves the sound card to deal with playing the file, and then gets on
with executing the other statements in your program.

(GetSoundsPlaying id)integer
FIG-6.24

GetSoundsPlaying()

FIG-6.25

GetSoundInstances() (GetSoundInstances id)integer

Activity 6.11

Start a new project called Sounds.

Compile the default code to create the media folder. Copy the file J1to10.wav
from the AGKDownloads/Chapter6 to the project’s media folder.

Recode the contents of main.agc to read:

	 LoadSound(1,”J1to10.wav”)
	 PlaySound(1)
	 do
	 loop

Make sure the sound is activated and the volume turned up on your computer.

Compile and run the program. Does the sound play? Save your project.

159� Hands On AGK BASIC: Resources

We have seen in previous chapters that the Sleep() statement halts the program for
a specified time. However, since the sound file is being handled by the sound card,
any sounds already being played are not affected by the Sleep() statement.

So the Sync() statement needs to be executed in order for the sound to play
continuously. This is because the Sync() statement does more than just update the
screen. It handles details about other things within the program including making
sure sound files are replayed when appropriate.

Music
Music files are handled separately from sound files and although some of the
commands for handling music look very similar to those for sounds, there are major
differences.

AGK currently plays only MP3, OGG Vorbis and ACC formatted music files.

Activity 6.12

Modify the code in Sounds so that it displays the numbers 1 to 10 as the sound
file plays. The code for this is:	
	
	 LoadSound(1,”J1to10.wav”)
	 PlaySound(1)
	 for c = 1 to 10
		 Print(c)
		 Sync()
		 Sleep(1000)
	 next c
	 do
	 loop

Test the program. Does the sound stop when the Sleep(1000) statement is
executed? Save your project.

Activity 6.13

In this Activity we are going to examine what is required in order to have a
sound file played repeatedly.

Remove the for..next loop and its loop body from Sounds.

Change the line
	 PlaySound(1)
to
	 PlaySound(1,100,1)

so that the sound should play repeatedly at full volume.

Run the program. Does the sound play more than once?

Inside the do..loop add the line
	 Sync()

How does this affect the playing of the sound file? Save your project.

Hands On AGK BASIC: Resources� 160

LoadMusic()

The LoadMusic() statement loads a specified music file and assigns it an ID number.
The statement has the format shown in FIG-6.26.

where:

	 id		 is an integer value specifying the ID to be assigned to the music
			 file.

	 sfile	 	 is a string giving the name of the file to be loaded, This must be
			 an MP3, OGG Vorbis or AAC file and must be stored in the
			 project’s media folder.

In the first version of the statement, the programmer chooses the ID number; in the
second version, the ID value is automatically selected by AGK and returned by the
statement.

PlayMusic()

Once loaded, a music file is played using the PlayMusic() statement (see FIG-6.27).

where:

	 id		 is an integer value giving the ID of the music file to be played.

	 iloop		 is an integer value (0 or 1) which determines if the music is to
			 play continuously. If set to 0, the music will play only once; if
			 set to 1, the music will be repeated. Zero is the default value.

	 idStrt		 is an integer value giving the lowest ID of the list of music files
			 to be played.

	 idFin		 is an integer value giving the highest ID of the list of music files
			 to be played.

This command will play all or most of the MP3 files stored in the media folder
without explicitly specifying all the ID numbers. To stop this you need to use the
longest form of the command and state explicitly which file or group of files are to
be played.

The simplest version of this command is

	PlayMusic()

which will play the music file with the lowest ID. For example, if a program started
with the lines

FIG-6.26

LoadMusic() ()

integer

LoadMusic id

Version 1

, sfile

Version 2

()LoadMusic sfile

Automatically assigned
ID values start at 1.

FIG-6.27

PlayMusic()

()PlayMusic id idStrtiloop idFin

Only one music file
can be playing at any
one time.

161� Hands On AGK BASIC: Resources

	LoadMusic(1,“TrackA.mp3”)
	LoadMusic(2,”TrackB.mp3”)
	LoadMusic(3,”TrackC.mp3”)
	LoadMusic(4,”TrackD.mp3”)
	LoadMusic(5,”TrackE.mp3”)

and followed this with

	PlayMusic()

then TrackA would be played first and then all other tracks played in sequence.

	PlayMusic(2,0)

would play TrackB followed by TrackC, TrackD and TrackE. The tracks would be
played once only.

	PlayMusic(3,1)

would play TrackC, TrackD, and TrackE and then play all five tracks continuously.

	PlayMusic(1,1,3,5)

would play TrackA, TrackB then repeat TrackC, TrackD and TrackE continuously.

	PlayMusic(3,0,3,3)

would play TrackC once only.

Using this command also requires you to add a Sync() statement within the do..
loop structure.

PauseMusic()

You can pause a playing MP3 file using the PauseMusic() statement. This has the
format shown in FIG-6.28.

Note that there is no need for an ID parameter since only one music file can be
playing at any instant.

ResumeMusic()

A paused MP3 file can be resumed from the point where it paused using the
ResumeMusic() statement (see FIG-6.29).

These tracks would
have to be stored in the
project’s media folder.

Activity 6.14

For copyright reasons, no MP3 files are included in the downloads for this
book.

Start a new project called Music. Compile the default code to create the
project’s media folder. Copy three of your own MP3 files into the media folder.

Modify main.agc to load all three files but play only the last one. The file
should be played only once. Test and save your code.

FIG-6.28

PauseMusic()

(PauseMusic)

Hands On AGK BASIC: Resources� 162

StopMusic()

To stop a music file completely use StopMusic() (see FIG-6.30).

DeleteMusic()

When a music resource is no longer required you can use the DeleteMusic()
statement to free up the memory occupied by the file (see FIG-6.31).

where:

	 id		 is an integer value giving the ID of the music resource to be
			 deleted from the program.

We can determine various characteristics about music files from several other music
statements.

GetMusicExists()

The GetMusicExists() statement returns 1 if a music resource of a specified ID
currently exists; otherwise zero is returned (see FIG-6.32).

where:

	 id		 is an integer value giving the ID of the music resource to be
			 checked.

SetMusicFileVolume()

You can set the volume of a specific music file using the SetMusicFileVolume() (see
FIG-6.33).

where:

	 id		 is an integer value giving the ID of the music whose volume is
			 to be changed.

	 ivol		 is an integer giving the volume as a percentage of full volume
			 (0 - silent; 100 - full volume).

SetMusicSystemVolume()

To set the volume for every music track, the SetMusicSystemVolume() statement can
be used (see FIG-6.34).

FIG-6.29

ResumeMusic()

(ResumeMusic)

FIG-6.30

StopMusic()

(StopMusic)

FIG-6.31

DeleteMusic()

(DeleteMusic)id

FIG-6.32

GetMusicExists()

(GetMusicExists id)integer

FIG-6.33

SetMusicFileVolume()

(SetMusicFileVolume ivol)id

163� Hands On AGK BASIC: Resources

where:

	 ivol		 is an integer giving the volume as a percentage of full volume
			 (0 - silent; 100 - full volume).

Detecting User Interaction
Most programs react to the user clicking a mouse or touching a pressure-sensitive
screen. AGK uses three main commands to detect a mouse/screen press.

GetPointerPressed()

One of these commands is the GetPointerPressed() statement which has the format
shown in FIG-6.35.

The statement returns 1 immediately the press occurs. Before and after that instant,
zero is returned.

GetPointerReleased()

A complementary statement is GetPointerReleased() which returns 1 the instant
the mouse button is released, or the finger lifted from the screen. This statement has
the format shown in FIG-6.36.

GetPointerState()

This third statement returns 1 while the button or finger is being pressed down and
returns 0 when the button/finger is not pressed. Note this is different from the first
two statements which only return 1 for a single instant as the mouse/finger is pressed/
lifted. The GetPointerState() command has the format shown in FIG-6.37.

The code in FIG-6.38 demonstrates the use of the GetPointerPressed() and
GetPointerReleased() statements.

(SetMusicSystemVolume ivol)FIG-6.34

SetMusicSystemVolume()

FIG-6.35

GetPointerPressed()

()GetPointerPressedinteger

FIG-6.36

GetPointerReleased()

()GetPointerReleasedinteger

FIG-6.37

GetPointerState()

()GetPointerStateinteger

FIG-6.38

Using Pointer
Statements

Sync()
do
	 rem *** Check for press ***
 if GetPointerPressed()=1
 Print(“Pressed”)
 endif
	 rem *** Check for release ***
 if GetPointerReleased()=1
 Print(“Released”)
 endif
 Sync()
loop

Hands On AGK BASIC: Resources� 164

Notice that for the first time, the main code is within the do..loop structure which
loops continually while testing for the button/screen press.

If we are not interested in detecting the exact moment the button is pressed or
released, but want to know if the button/finger is currently pressed down/touching the
screen or up/not touching the screen, then the GetPointerState() command will be
more useful.

GetPointerX() and GetPointerY()

We can find out the exact position on the screen where a press has occurred using
GetPointerX() (which returns the x-coordinate) and GetPointerY() (which returns
the y-coordinate). The formats for these two statements are shown in FIG-6.39.

Activity 6.15

Start a new project called, PressedFlower and change the code in main.agc to
match that given in FIG-6.38.

Test the program and check that you can see messages as you press and release
the mouse button. Save your project.

Activity 6.16

Modify the code in PressedFlower to read:
	 Sync()
	 do
 		 if GetPointerState()=1
 		 Print(“Pressed”)
 		 else
 		 Print(“Released”)
 		 endif
 		 Sync()
	 loop

Test the new code. How do the messages that appear on the screen differ from
those displayed by the previous version of the program? Save your project.

FIG-6.39

GetPointerX()
GetPointerY()

()GetPointerXinteger

()GetPointerYinteger

Activity 6.17

Modify the code in PressedFlower by removing the line
	 Print(“Pressed”)
and replacing it with
	 PrintC(GetPointerX())
 	PrintC(“ “)
 	Print(GetPointerY())

Test and save your project.

165� Hands On AGK BASIC: Resources

GetSpriteHit()

We can find out if a particular screen position is over a sprite using the GetSpriteHit()
command. This is useful for finding out if the user has, for example, clicked/pressed
on a sprite. The command’s format is shown in FIG-6.40.

where:

	 fx, fy		 are real numbers giving the position within the app window to be
			 tested. The values will represent percentages or virtual
			 coordinates depending on the window setup.

If the location is over a sprite, the sprite ID is returned, otherwise zero is returned.

Text Resources
We’ve already seen how to display information on the screen using the Print()
statement, but its main limitation is that we cannot choose the exact position at which
the output is to appear. This will be a critical requirement for any game.

Luckily, AGK offers a second and more controlled way of creating textual output;
text resources. Just like images, sprites, sound, and music resources, text resources
are created and assigned a unique ID.

A few of the many statements available for manipulating text resources are described
here.

CreateText()

The CreateText() statement allows us to create a new text resource. The statement
has the format shown in FIG-6.41.

FIG-6.40

GetSpriteHit()

()GetSpriteHitinteger fx fy

Activity 6.18

Modify PressedFlower by removing all of the code within the do..loop
structure.

Add code to display a sprite showing poppy.bmp at the centre of the app
window (set the sprite’s width to 15%).

To hide the poppy when it is clicked on, change the code within the do..loop
structure to:
 	 if GetPointerPressed()=1
 	 x# = GetPointerX()
 	 y# = GetPointerY()
 	 hit = GetSpriteHit(x#,y#)
 	 if hit <> 0
 	 SetSpriteVisible(1,0)
 	 endif
 	 endif
	 Sync()

Test and save your project.

ËË Text resources
use the same
character images as
Print() to form the
displayed text.

Hands On AGK BASIC: Resources� 166

where:

	 id		 is an integer value specifying the ID to be assigned to the text
			 resource.

	 string		 is a string containing the text to be held within the text resource.

Version 1 of the statement allows the programmer to select the resource ID; version
2 automatically assigns an ID and returns that ID.

For example, we could create a text resource containing the phrase Hello world,
assigning it an ID of 1 using the statement:

	CreateText(1, “Hello world”)

SetTextColor()

We can select the color and transparency of the text using the SetTextColor()
statement (see FIG-6.42).

where:

	 id		 is an integer value specifying the ID of the text resource whose
			 colour is to be set.

	 ired		 is an integer value specifying the intensity of the red component
			 of the colour. Range 0 to 255.

	 igreen		 is an integer value specifying the intensity of the green component
			 of the colour. Range 0 to 255.

	 iblue		 is an integer value specifying the intensity of the blue component
			 of the colour. Range 0 to 255.

	 itrans		 is an integer value specifying the opaqueness of the text.
			 Range 0 (invisible) to 255 (fully opaque).

For example, if we have already created a text resource with an ID of 1, then we can
display that text in opaque black using the line:

	SetTextColor(1,0,0,0,255)

SetTextPosition()

By default, text will appear in the top left corner of the app window. To position it

FIG-6.41

CreateText() ()

integer

id

Version 1

, string

Version 2

()CreateText string

CreateText

FIG-6.42

SetTextColor()

()SetTextColor id , ired , igreen , iblue itrans,

The default colour
for a text resource is
white.

167� Hands On AGK BASIC: Resources

elsewhere we need to use the SetTextPosition() statement which has the format
shown in FIG-6.43).

where:

	 id 		 is the integer value previously assigned as the ID of the text
			 to be moved.

	 x		 is a real value giving the new x-coordinate. This will be in virtual
			 pixels or percentage depending on the coordinate system defined
			 when the app window was created.

	 y		 is a real value giving the new y-coordinate measured in virtual
			 pixels or percentage.

We could place text resource 1 at the centre of the app window using the statement:

	SetTextPosition(1,50,50)

The position (50,50) refers to the top left part of the text (see FIG-6.44).

SetTextSize()

The size of the text can be adjusted using the SetTextSize() statement (see FIG-
6.45).

where:

	 id 		 is the integer value previously assigned as the ID of the text
			 to be resized.

	 fsize		 is a real value specifying the height of the characters within the
			 text. This is measured in percentage or virtual pixels depending
			 on the setup. The width is calculated automatically.

The default size for all text output is 4. Remember also that the larger the text

FIG-6.43

SetTextPosition() ()SetTextPosition id , x , y

FIG-6.44

Positioning a Text
Resource

Hello world

50%

50%

FIG-6.45

SetTextSize() ()SetTextSize id , fsize

Hands On AGK BASIC: Resources� 168

becomes, the more obvious the limitations of the images from which it is derived.

We could change the size of the text displayed by text resource 1 from the default 4
to 6 using the statement:

	SetTextSize(1,6)

SetTextString()

The actual text contained within a text resource can be changed using the
SetTextString() statement (see FIG-6.46).

where:

	 id 		 is the integer value previously assigned as the ID of the text
			 resource whose text is to be changed.

	 string		 is the new string to be assigned to the text resource.

SetTextVisible()

You can hide a text resource or make it reappear using the SetTextVisible()
statement (see FIG-6.47).

where:

	 id 		 is the integer value previously assigned as the ID of the text
			 resource to be operated on.

	 ivisible	 is an integer value (0 or 1) used to hide or display the text.
			 (0 - hide ; 1 - show)

DeleteText()

When a text resource is no longer required, it should be deleted, thereby freeing up
memory resources. This is done using the DeleteText() statement (see FIG-6.48).

where:

	 id		 is an integer value giving the ID of the text resource to be
			 deleted from the program.

Using a Text Resource

The program below demonstrates most of the text resource statements we have
covered here. The purpose of the code is to display a sequence of dots. Starting with
one dot and increasing to 10 before starting again at one dot. This sequence is repeated
five times before the program stops. A simple animation such as this might be used
to indicate to the user that the program is busy.

FIG-6.46

SetTextString() ()SetTextString id , string

FIG-6.47

SetTextVisible() ()SetTextVisible id ivisible

FIG-6.48

DeleteText() ()idDeleteText

169� Hands On AGK BASIC: Resources

The program’s logic can be described in structured English as:

Create empty text resource
Set text colour
Set text size
Set text position	
FOR 5 times DO
		 Create empty string
		 FOR dots = 1 TO 10 DO
			 Add dot to string
			 Place string in text resource
			 Wait 200 msecs
		 ENDFOR
		 Empty text resource
		 Wait 1 sec
ENDFOR
Delete text resource

The code for the program is shown in FIG-6.49.

FIG-6.49

Using a Text Resource

rem *** Text Resource demo ***

rem *** Create empty string ***
CreateText(1,””)
rem *** Set resource attributes ***
SetTextPosition(1,15,30)
SetTextColor(1,250,250,0,255)
SetTextSize(1,10)
rem *** FOR 5 times DO ***
for c = 1 to 5
 rem *** Empty string ***
 text$ = “”
 for dots = 1 to 10
 rem *** Add dot to string ***
 text$ = text$+”.”
 rem *** Place string in text resource ***
 SetTextString(1,text$)
 Sync()
 rem *** Wait 200 msecs ***
 Sleep(200)
 next dots
 rem *** Empty text resource ***
 SetTextString(1,””)
 Sync()
 rem *** Wait one second ***
 Sleep(1000)
next c
rem *** Delete resource ***
DeleteText(1)
do
loop

Activity 6.19

Start a new project called UsingText and modify the code in main.agc to
match that given in FIG-6.49. Test the program.

Modify the code to use the underscore character (_) instead of the full stop.

Test and save your project.

Hands On AGK BASIC: Resources� 170

Later
This chapter has covered all of the statements available for manipulating sound and
music resources. However, there are many other commands that can be used with
images, sprites, text and user input which are not covered here. These will be
explained in later chapters.

Summary
±	Resources is the name given to other elements added to a project. These can be

images, sounds, music, sprites, virtual buttons, or text.

±	A resource needs to be created and assigned an ID before it can be used.

±	No two resources of the same type may be assigned the same ID number.

±	Resources of different types may have identical ID numbers.

±	As a general rule, resources should be deleted when no longer required.

±	Files containing resources must be stored in the project’s media folder.

±	Most images are constructed from colour dots known as pixels.

±	An image constructed from pixels is known as a bitmap image.

±	Bitmap images can be stored in many different formats.

±	Lossless formats save an exact copy of an image but create large files.

±	Lossy formats save a degraded copy of the image but create smaller files.

±	AGK can handle three bitmap formats: BMP, PNG, and JPG.

±	BMP and PNG are lossless file formats; JPG is a lossy file format.

±	Images can contain transparent elements.

±	Transparency can be achieved in one of two ways: by making all black pixels
invisible or by adding an alpha channel to the image.

±	Alpha channels allow degrees of translucency.

±	When creating an image in which black elements are to be made invisible
make sure that the image has not been created using anti-aliasing.

±	Anti-aliasing can cause problems around the edges of objects within an image.

±	Images need to be loaded into AGK and given a unique ID number.

±	To display an image on the screen it must first be loaded into a sprite.

±	Using the default setup, screen distances are given in percentage terms and
sprites use the pixel size of the image it contains as a percentage value when
determining the size of the image.

±	Sprites can be resized, moved, and made invisible.

±	Sprites can be placed on different layers.

±	There are 10,001 layers numbered 0 to 10,000.

±	Layer 0 is the top layer; layer 10,000 is the bottom layer.

±	A sprite placed on a higher layer will pass in front of a sprite placed on a lower

171� Hands On AGK BASIC: Resources

layer.

±	A sprite can be cloned.

±	A sprite can be made invisible.

±	Deleting a sprite frees up the resources it requires.

±	Sound files must be in uncompressed WAV format.

±	A sound can be set to play one time only or repeatedly.

±	The volume of an individual sound can be set only when playing starts.

±	The overall system volume can be modified at any time.

±	Music files must be in MP3 OGG Vorbis or AAC formats.

±	By default, all music files are played once when a PlayMusic() command is
issued.

±	Basic user interaction allows us to detect a screen touch or mouse button press.

±	It is possible to detect when:
	 the mouse button/screen is first pressed
	 the mouse button/screen is first released
	 the current state of the mouse button/screen - pressed or unpressed.

±	We can detect if a mouse/screen press occurs over a sprite.

±	Using a text resource allows us to control attributes of a string.

±	The string within a text resource can be modified, resized, positioned,
coloured, and made transparent.

Hands On AGK BASIC: Resources� 172

Solutions
Activity 6.1

Although the image is only 64 x 64 pixels it appears much
larger within the app window.

Activity 6.2
Modified FirstSprite:

rem *** First Sprite ***

rem *** Load image ***
LoadImage(1,”ball.bmp”,1)
rem *** Create sprite ***
CreateSprite(1,1)
rem *** Resize sprite ***
SetSpriteSize(1,10,10)
Sync()
do
loop

The sprite now occupies 10% of the width and height of the
app window. Because the app window is square, this means
that the ball is perfectly round.

To modify the app window height, the height line in setup.
agc needs to changed to

	 height=1024

When the height of the app window is changed, 10% of the
height is much greater than 10% of the width and so the ball
becomes stretched.

Activity 6.3
The line

	 SetSpriteSize(1,10,10)

should first be changed to
	 SetSpriteSize(1,-1,10)

The ball will be round but this time it is 10% of the height
and so, much larger than previously.

On the next run the line should now read
SetSpriteSize(1,10,-1)

which will return the ball to the size it had been before we
resized the app window (10% of the width).

Activity 6.4
Modified FirstSprite:

rem *** First Sprite ***

rem *** Clear screen to white ***
SetClearColor(255,255,255)
Sync()
rem *** Load image ***
LoadImage(1,”ball.bmp”,1)
rem *** Create sprite ***
CreateSprite(1,1)
rem *** Resize sprite ***
SetSpriteSize(1,10,-1)
Sync()
do
loop

The black pixels are invisible.

Activity 6.5
Modified FirstSprite:

rem *** First Sprite ***

rem *** Clear screen to white ***
SetClearColor(255,255,255)
Sync()
rem *** Load image ***
LoadImage(1,”ball.bmp”,1)
rem *** Create sprite ***
CreateSprite(1,1)
rem *** Resize sprite ***
SetSpriteSize(1,10,-1)
Sync()
rem *** Wait then reposition sprite ***
Sleep(2000)
SetSpritePosition(1,50,50)
Sync()
do
loop

Activity 6.6
Modified FirstSprite:

rem *** First Sprite ***

rem *** Clear screen to white ***
SetClearColor(255,255,255)
Sync()
rem *** Load image ***
LoadImage(1,”ball.bmp”,1)
rem *** Create sprite ***
CreateSprite(1,1)
rem *** Resize sprite ***
SetSpriteSize(1,10,-1)
Sync()
rem *** Move sprite across the screen ***
for p = 1 to 100
 SetSpritePosition(1,p,p)
 Sync()
 Sleep(50)
next p
do
loop

Activity 6.7
No solution required.

Activity 6.8
Modified FirstSprite:

rem *** Sprite Depth ***

rem *** Change screen to white ***
SetClearColor(255,255,255)
Sync()

rem *** Load images ***
LoadImage(1,”ball.bmp”,1)
LoadImage(2,”poppy.bmp”,1)
rem *** Create ball sprite ***
CreateSprite(1,1)
rem *** Bring sprite forward ***
SetSpriteDepth(1,9)
SetSpriteSize(1,10,-1)
rem *** Create poppy sprite ***
CreateSprite(2,2)
SetSpriteSize(2,20,-1)
SetSpritePosition(2,50,50)
Sync()
rem *** Move sprite across the screen ***
for p = 1 to 100
 SetSpritePosition(1,p,p)
 Sync()
 Sleep(50)
next p
do
loop

The ball passes in front of the poppy rather than behind it.

Activity 6.9
Modified FirstSprite:

173� Hands On AGK BASIC: Resources

rem *** Sprite Depth ***

rem *** Change screen to white ***
SetClearColor(255,255,255)
Sync()

rem *** Load images ***
LoadImage(1,”ball.bmp”,1)
LoadImage(2,”poppy.bmp”,1)
rem *** Create ball sprite ***
CreateSprite(1,1)
rem *** Bring sprite forward ***
SetSpriteDepth(1,9)
SetSpriteSize(1,10,-1)
rem *** Create poppy sprites ***
CreateSprite(2,2)
SetSpriteSize(2,20,-1)
SetSpritePosition(2,50,50)
CloneSprite(3,2)
SetSpritePosition(2,20,20)
rem *** Move cloned sprite to layer 8 ***
SetSpriteDepth(3,8)
Sync()
rem *** Move sprite across the screen ***
for p = 1 to 100
 SetSpritePosition(1,p,p)
 Sync()
 Sleep(50)
next p
do
loop

The ball passes under the new poppy and over the original
poppy.

Activity 6.10
Modified FirstSprite:

rem *** Sprite Hide ***

rem *** Change screen to white ***
SetClearColor(255,255,255)
Sync()
rem *** Load images ***
LoadImage(1,”ball.bmp”,1)
LoadImage(2,”poppy.bmp”,1)
rem *** Create ball sprite ***
CreateSprite(1,1)
rem *** Bring sprite forward ***
SetSpriteDepth(1,9)
SetSpriteSize(1,10,-1)
rem *** Create poppy sprites ***
CreateSprite(2,2)
SetSpriteSize(2,20,-1)
SetSpritePosition(2,50,50)
CloneSprite(3,2)
SetSpritePosition(2,20,20)
rem *** Move cloned sprite to layer 8 ***
SetSpriteDepth(3,8)
Sync()
rem *** Move sprite across the screen ***
for p = 1 to 100
 SetSpritePosition(1,p,p)
 Sync()
 Sleep(50)
next p
rem *** Hide poppies ***
SetSpriteVisible(2,0)
SetSpriteVisible(3,0)
Sync()
do
loop

Activity 6.11
The sound file J1to10.wav should play if everything is set up
properly.

The sound file voices the numbers 1 to 10 in Japanese.

Activity 6.12
The text should be in sync with the spoken words. Although
the speaker pauses, the sound plays continuously even while
the Sleep() statement is being executed.

Activity 6.13
Modified Sounds:

rem *** Play sound file ***
rem *** Load file ***
LoadSound(1,”J1to10.wav”)
rem *** Start playing file ***
PlaySound(1,100,1)
do
 Sync()
loop

Without the Sync()statement the file will play only once.

Activity 6.14
Code for Music:

rem *** Play music ***

rem *** Load music Files ***
LoadMusic(1,”TrackA.mp3”)
LoadMusic(2,”TrackB.mp3”)
LoadMusic(3,”TrackC.mp3”)
rem ** Play last track once ***
PlayMusic(3,0,3,3)
do
loop

Activity 6.15
The messages will appear briefly as the mouse button is
pressed and released.

Activity 6.16
The Pressed message remains visible while the mouse button
is down; the Released message remains visible while the
mouse button is up.

Activity 6.17
Modified PressedFlower:

Sync()
do
 if GetPointerState()=1
 PrintC(GetPointerX())
 PrintC(“ “)
 Print(GetPointerY())
 else
 Print(“Released”)
 endif
 Sync()
loop

Activity 6.18
Modified PressedFlower:

rem *** Load image ***
LoadImage(1,”poppy.bmp”)
rem *** Create sprite ***
CreateSprite(1,1)
SetSpritePosition(1,50,50)
SetSpriteSize(1,15,-1)
Sync()
do
 rem *** IF pointer pressed THEN ***
 if GetPointerPressed()=1
 rem *** Get its coordinates ***
 x# = GetPointerX()
 y# = GetPointerY()
 rem *** Check if coord over a sprite ***
 hit = GetSpriteHit(x#,y#)
 rem ***IF they are THEN hide sprite ***
 if hit <> 0
 SetSpriteVisible(1,0)
 endif
 endif
 Sync()
loop

Hands On AGK BASIC: Resources� 174

Activity 6.19
Modified UsingText:

rem *** Text Resources demo ***

rem *** Create empty string ***
CreateText(1,””)
rem *** Set resource attributes ***
SetTextPosition(1,15,30)
SetTextColor(1,250,250,0,255)
SetTextSize(1,10)
rem *** FOR 5 times DO ***
for c = 1 to 5
 rem *** Empty string ***
 text$ = “”
 for dots = 1 to 10
 rem *** Add underscore to string ***
 text$ = text$+”_”
 rem *** Place string in text resource ***
 SetTextString(1,text$)

 Sync()
 rem *** Wait 200 msecs ***
 Sleep(200)
 next dots
 rem *** Empty text resource ***
 SetTextString(1,””)
 Sync()
 rem *** Wait one second ***”
 Sleep(1000)
next c
rem *** Delete resource ***
DeleteText(1)
do
loop

Hands On AGK BASIC : Spot the Difference Game� 175

Spot the Difference Game

In this Chapter:

T Designing Screen Layouts

T	Creating Sprite Images

T	Adding Background Music

T	Adding Sound Effects

T	Changing Screen Orientation

T	Game Testing

176� Hands On AGK BASIC: Spot the Difference Game

Game - Spot the Difference

Introduction
At last, we know enough AGK BASIC to create a first game. This game is a 21st
century update on the spot-the-difference game so beloved of many magazines. The
game shows two almost identical images and the challenge is to spot the differences
between the two images.

Game Design
When creating a game, there are many aspects of that game that we have to think
about before we start to write program code.

Since this is a computer game derived from an existing paper-based one, we don’t
have to worry about giving an in-depth description of the game, defining the rules or
stating how the game is won.

On the other hand, we still need to design the screen layout for the game. In fact, there
may be several layouts to design: a start-up splash screen, the main game screen, an
end-game screen and a credits screen detailing all those involved in the game
development. Not only the overall screen designs need to be considered, but also the
design of any individual sprites that may appear during the game play.

Any background music and sound effects not only have to be created, but when these
are to be played also needs to be specified.

User interaction methods and help options are other aspects that have to be considered.

Game Description

In our game, the player is presented with two almost identical images. The left-hand
image is the original image; the right-hand image has six modifications. The aim of
the game is for the player to click (press) on the areas of the right-hand image that
differ from those in the left-hand image.

The time elapsed since the start of the game is continually displayed.

The total time (in seconds) taken to find all six differences is displayed at the end of
the game.

Screen Layouts

This game will have four screen layouts: splash screen, game screen, finish screen
and credits screen.

You may want to create a rough drawing of the various screen layouts before going
on to create a more detailed design using a drawing or paint package.

Another important point at this stage is to consider the screen size and resolution of
the device(s) on which you want the game to run. Although AGK will allow your
game to run on almost any platform, you may still want to consider how the screen
size will affect the playability of your game. For example, 10 buttons along the right-
hand edge of an iPad looks fine, but try the same thing on an iPhone and only the

Hands On AGK BASIC: Spot the Difference Game� 177

smallest of fingers will be able to use the buttons easily! And what about the near
future? If you create images which are 1024 x 768 pixels in size with the iPad 2 in
mind, what happens if a later iPad has a screen resolution of 2048 x 1536 pixels?
Your images may not look as good on that!

For this game, the screen layouts have been designed using Adobe Illustrator which
is a vector-drawing package. The great advantage of a vector-based image is that it
can be converted to a regular bitmap image giving the best possible quality for a
required resolution.

The splash screen (filename : AGKSplash.png) is shown in FIG-7.1.

This is a single PNG image. Note that it includes the name of the game, the company
name (Digital Skills), text stating that it was built using AGK and the AGK website
address. This last element is requested of you by The Game Creators if you are
going to publish your app, but is not compulsory.

The second image (see FIG-7.2) is of the game screen containing the two photographs
that form the game. This is the only image in landscape mode.

FIG-7.1

The Splash Screen pot the Difference

Made with AGK www.appgamekit.com

pot the Difference
Original Press on the 6 Di�erences

Time :
FIG-7.2

The Main Screen

178� Hands On AGK BASIC: Spot the Difference Game

The photos themselves are not separate entities but part of the single overall image.
Note that the top right corner leaves a gap where the time is to be displayed in real-
time.

The third image is the end screen which shows the total time taken in seconds (see
FIG-7.3).

Again, you can see that a space has been left for the actual number of seconds taken
to find all the differences. In addition, this screen also shows a separate button sprite
in the bottom-right which allows the user to view the credits screen if required.

The final screen (see FIG-7.4) shows the names of those involved in creating the
various aspects of the game: graphics, code, music. It also adds copyright details and
the AGK logo.

FIG-7.3

The End Screen

pot the Difference

You found all 6 di�erences in:

 seconds

Credits

FIG-7.4

The Credits Screen pot the Difference

Credits

Coding Alistair Stewart

Alistair Stewart
Music Emily Aurora Knight

©2011 Digital Skills

Graphics

Hands On AGK BASIC: Spot the Difference Game� 179

A final visual component is the ring which appears around the differences in the
photograph when the player presses in the correct area. Although there will be six of
these, all make use of the same image (see FIG-7.5).

Other Resources

The only other resources used in the game are a sound effect, which plays when a
modified area of the photo is pressed for the first time, and music which plays in the
background while the game is running.

Overall Game Document

A useful document to produce is one showing not only the four screen layouts but
also giving details of any sounds or actions that can occur during each stage of the
game (see FIG-7.6).

FIG-7.5

The Circle Spite

FIG-7.6

The Overall Game
Document

pot the Difference

Made with AGK www.appgamekit.com

pot the Difference
Original Press on the 6 Di�erences

Time : xxx

pot the Difference

You found all 6 di�erences in:

xxx seconds

Credits

pot the Difference
Credits

Coding Alistair Stewart

Music Emily Aurora Knight

©2011 Digital Skills

Splash Screen

Main Screen

End Screen

Credits Screen

Music begins
Rings appear around
 correctly selected areas
Sound effect when ring
 appears
Time in seconds displayed

Music continues
Displays total time taken to
 find all differences

Music continues

time

All differences found

Credits button pressed

1

2

3

4

time

180� Hands On AGK BASIC: Spot the Difference Game

In the Main and End screen layouts X’s are used to indicate where text is to be
positioned, but the exact value of that text is unknown at the time of the design.

The Main screen is in landscape mode, while the other three screens are designed for
portrait mode. As a general rule, it is best not to switch between modes within a game,
but in this example it is interesting to see how the actual game play experience is
affected by the transition.

On the right of FIG-7.6 is a state-transition diagram. The numbered circles represent
the four different screen layouts. When each new screen appears during the game we
consider the game to have entered a new state. The lines between the circles represent
the moving from one state to another (i.e. from one screen to another). The text
beside the lines explains what causes the game to move from one state to another. So
we see that we move from the splash screen to the main game screen once an
unspecified amount of time has passed; we move from the main screen to the end
screen when all 6 differences have been found. Notice that we move to the credits
screen only if the Credits button is pressed and that we return from the credits screen
to the end screen after some time has elapsed.

For a more complex game, we might need to give greater detail for the design of each
screen and the individual sprites which may appear on that screen.

Copyright Issues

Of course, if you intend to create a game simply for the amusement of yourself and
your family, then making use of images you find on the internet, or adding your
favourite music to the game isn’t really a problem. However, should you wish to turn
your game into a commercial product then you must make sure all aspects of the
game are either copyright free, that you have permission from the copyright holder
to use the material, or that the material is entirely of your own creation.

Even if you created the photographs used in a game, you can still breach copyright.
For example, you can’t use someone’s image in a commercial product without their
approval. You can’t even use some buildings! If you were to use images taken in a
Disney park for example, you would probably have their lawyers on your doorstep
before you had made your first 10 sales!

Even if you record your own music, the melody itself may be copyrighted. Play and
write your own music to be on the safe side.

You mustn’t even borrow a one second sound effect without approval.

Don’t worry! There are websites which offer copyright free material - but check that
it can be used in a commercial product.

Finally, the images have no copyright problems, you have written and played the
music, created all the sound effects, so you must be safe now, right? Afraid not! If
you save your music in MP3 format, you’ll find another set of lawyers wanting to
have a few words. This time it won’t happen until you’ve sold 5000 copies of your
game but at that point you’ll have to hand over large sums of money for the privilege
of using the MP3 format. The way round this one is to use the OGG Vorbis format
for your music files. AGK will automatically look for a file in this format even when
your code specifies MP3.

And once you’ve made sure all your resources have no copyright issues, are you safe
at last to write your game? Well, not entirely. You can still be on the receiving end of

Hands On AGK BASIC: Spot the Difference Game� 181

a legal communication if someone thinks you’ve ripped off their game idea or even
if your code makes use of some technique that has been copyrighted.

Have you given up all hope of creating a commercial game? Well, you can do a few
things to protect yourself from the unexpected legal challenge. One option is to set
up a limited company and publish your games through that (it’s really not too
complicated). Using this method, only your company can be sued if the worst should
happen - not you. So you won’t have to sell your home and flash new car to pay all
the legal claims that have arrived on the doorstep.

And perhaps the easiest option of all is to let The Game Creators publish your game
for you. Okay they are going to want 30%, but on the other hand they will test your
game, suggest any changes, market it for you, even add revenue-gathering adverts
and organise the cut-down free version and the paid-for full version. Chances are
you’ll sell more copies through them than you would do on your own and even after
giving them their cut, you’ll still make more money. And perhaps best of all, they are
legally responsible - not you. Now, on with the game ...

Game Logic

The next stage is to do a high-level structured English description of the game.

The first level should be kept short:

	 1	 Load resources
	 2	 Set up game screen
	 3	 Play game
	 4	 End game

More detail can be added to each of these using stepwise refinement:

	 1 Load resources
		 1.1	Load images
		 1.2 Load sound
		 1.3 Load music

	 2 Set up game screen
		 2.1 Start music
		 2.2 Display Main screen
		 2.3 Add circles over differences
		 2.4 Hide circles

	 3 Play game
		 3.1 Start timer
		 3.2 REPEAT
		 3.3		 IF user selected a difference THEN
		 3.4			 Show ring
		 3.5			 Play sound effect
		 3.6		 ENDIF
		 3.7 		 Update time
		 3.8	UNTIL all 6 differences selected
		 3.9 Delete Main screen resources

	 4 End game	
		 4.1 Show End screen
		 4.2 Display time taken
		 4.3 Display Credits button
		 4.4 DO
		 4.5 		 IF Credits button pressed THEN
		 4.6			 Show Credits screen for 5 seconds
		 4.7 		 ENDIF
		 4.8 LOOP

182� Hands On AGK BASIC: Spot the Difference Game

Game Code
The game code follows the logic given above. The first section loads the resources
but also includes comments on the overall program.

Structured English:

	 Load resources

Code:

rem *************************************
rem * program : Spot the Difference *
rem * version : 1.0 *
rem * language : AGK BASIC v1.02 *
rem * date : 18 Aug 2011 *
rem * author : A. Stewart *
rem * platform : Ipad 1 *
rem *************************************

rem *** Load resources ***

rem *** Load images ***
main = LoadImage(“Main.jpg”)
finish = LoadImage(“End.jpg”)
credits = LoadImage(“Credits.jpg”)
ring = LoadImage(“Ring.png”,0)
button = LoadImage(“Button.bmp”,1)

rem *** Load sounds ***
ringsound = LoadSound(“Click.wav”)

rem *** Load music ***
backgroundmusic = LoadMusic(“Background.wav”)

Structured English:

	 Set up game screen

Code:

rem *** Play music ***
PlayMusic(BackgroundMusic)

rem *** Show main screen ***
CreateSprite(1,main)
SetSpriteSize(1,100,100)

rem *** Load rings at image differences ***
CreateSprite(2,ring)
SetSpriteSize(2,-1,10)
SetSpritePosition(2,91,86)
CloneSprite(3,2)
SetSpritePosition(3,51.5,22)
CloneSprite(4,2)
SetSpritePosition(4,49,68)
CloneSprite(5,2)
SetSpritePosition(5,73,66)
CloneSprite(6,2)
SetSpritePosition(6,88.5,66)
CloneSprite(7,2)

Hands On AGK BASIC: Spot the Difference Game� 183

SetSpritePosition(7,55.75,62.5)

rem *** Hide rings ***
for c = 2 to 7
 SetSpriteDepth(c,9)
 SetSpriteVisible(c,0)
next c
rem *** Update screen ***
Sync()

Structured English:

	 Play game

Code:

rem *** Start timer ***
start = GetSeconds()
CreateText(1,Str(timetaken))
SetTextColor(1,0,0,0,255)
SetTextPosition(1,88,6)

rem *** Set count of differences found ***
found = 0
rem *** Get user clicks until all 6 differences found ***
repeat
		 rem *** Check for clicked button ***
 pressed = GetPointerPressed()
		 rem *** IF pressed, then check for sprite hit ***
 if pressed = 1
 x = GetPointerX()
 y = GetPointerY()
 hit = GetSpriteHit(x,y)
 rem *** IF clicked over hidden ring THEN
 if hit > 1 and hit <=7 and GetSpriteVisible(hit)=0
 rem *** Show ring ***
 SetSpriteVisible(hit,1)
 rem *** Play sound effect ***
 PlaySound(1)
 rem *** Add 1 to differences found ***
 found = found + 1
 endif
 endif
 rem *** Update time so far ***
 timetaken = GetSeconds() - start
 SetTextString(1,Str(timetaken))
 Sync()
until found = 6

rem *** Delete existing sprites ***
for c = 1 to 7
 DeleteSprite(c)
next c
rem *** Delete sound ***
DeleteSound(ringsound)
rem *** Delete text ***
DeleteText(1)

Note that we have had to add a found variable to keep count of how many differences
have been found.

184� Hands On AGK BASIC: Spot the Difference Game

Structured English:

End game

Code:

rem *** Show End screen... ***
CreateSprite(1,finish)
SetSpriteSize(1,100,100)
rem *** ... with button... ***
CreateSprite(2,button)
SetSpriteSize(2,15,-1)
SetSpritePosition(2,80,90)
rem *** ...and total time taken ***
CreateText(1,Str(timetaken))
SetTextColor(1,0,0,0,255)
SetTextPosition(1,36,31)
Sync()

rem *** Allow for Credits button press ***
do
 pressed = GetPointerPressed()
 if pressed = 1
 x = GetPointerX()
 y = GetPointerY()
 hit = GetSpriteHit(x,y)
 rem *** IF Credit button pressed THEN ***
 if hit = 2
 rem *** Show credits screen for 5 seconds ***
 CreateSprite(3,credits)
 SetSpriteSize(3,100,100)
 SetSpriteDepth(3,8)
 Sync()
 Sleep(5000)
 rem *** Remove Credits screen ***
 DeleteSprite(3)
 endif
 endif
 Sync()
loop

The Credits screen is displayed “on top of” the End screen, so when it is deleted after
5 seconds, the End screen reappears.

No program is likely to be perfect on the first attempt. Perhaps there will be problems
with the code: the logic may be wrong and this will be highlighted during testing.

Activity 7.1

Start a new project called SpotTheDifference and compile the default code so
that the project’s media folder is created.

From AGKDownloads/Chapter7, copy all the files in the folder to the project’s
media folder.

In setup.agc set width to 1024 and height to 768. This will create a landscape
oriented app window.

Modify main.agc to match the code given over the last few pages. Test and
save your code. What problems occurred?

Hands On AGK BASIC: Spot the Difference Game� 185

The main problem with this first version of the game is caused by the fact that the
main screen is in landscape mode but the End and Credits screens are in portrait
mode. To get this to operate correctly, we need to change the screen orientation after
the game is complete.

SetDisplayAspect()

We can change the screen’s aspect ratio using the SetDisplayAspect() statement. In
this statement we set the ratio of the width to the height. At the start of a program, the
aspect ratio is determined by the values given for width and height in the setup.agc
file. When the program is running, we can change to portrait orientation (but without
changing the actual app window dimensions) using the line:

	SetDisplayAspect(768/1024.0)

 The SetDisplayAspect() statement has the format shown in FIG-7.7.

where:

	 value		 is a real number giving the ratio of the width to the height.

An important aspect to check is the finer details of game playability. For example,
you may have noticed that when the last difference is found, the game jumps
immediately to the End screen without giving the player a chance to see the placing
of that final ring. We could solve this problem by getting the program to pause for
one second before the End screen appears.

A major problem with the game is that it has no way of stopping the player just
pressing anywhere at random in the hope of hitting on a difference merely by chance.
To stop this, we could introduce a maximum number of presses on the modified
image. Perhaps 7 - this would allow the player one wrong attempt. However,
introducing this change would mean that a new screen would have to be introduced

One of the numbers has
to be real so that the
calculation will produce a
real (not integer) result.

FIG-7.7

SetDisplayAspect()

SetDisplayAspect ()value

Activity 7.2

Modify your program so that, immediately after the resources of the main
screen have been deleted, the display ratio is set using the lines:

	 rem *** Reset aspect ratio ***
	 SetDisplayAspect(768.0/1024.0)

Retest and save your program.

Activity 7.3

Add the lines

	 rem *** Wait before showing next screen ***
	 Sleep(1000)

immediately after the DeleteText(1) line.

Test this modification and check that the player has time to see the final ring
in position before the End screen appears.

186� Hands On AGK BASIC: Spot the Difference Game

into the game, showing that the player had failed to complete the game. The Failed
image is shown in FIG-7.8. This page will also show the Credits button.

This modification to the program means that various parts of the game documentation
also need to be changed. The first of these is the overall game document showing the
various pages of the game and the state-transition diagram. The updated version of
this document is shown in FIG-7.9.

pot the Difference

Sorry!
You failed to spot
all the differences
after 7 attempts

FIG-7.8

The Fail Screen

FIG-7.9

The Updated Game
Document

pot the Difference

Made with AGK www.appgamekit.com

pot the Difference
Original Press on the 6 Di�erences

Time : xxx

pot the Difference

You found all 6 di�erences in:

xxx seconds

Credits

Splash Screen

Main Screen

Failed Screen

End Screen

Credits Screen

Music begins
Rings appear around
 correctly selected areas
Sound effect when ring
 appears
Time in seconds displayed

Music continues
Displays total time taken to
 find all differences

Music continues

time

All differences
found

Credits button
pressed

1

2

4

3

5
time and
all differences
found

pot the Difference
Credits

Coding Alistair Stewart

Alistair Stewart
Music Emily Aurora Knight

©2011 Digital Skills

Graphics

pot the Difference

Sorry!
You failed to spot
all the differences
after 7 attempts

Credits

Music continues
Displays failed message

7 presses and
all differences
not found

Credits button
pressed

time and
all differences
not found

Hands On AGK BASIC: Spot the Difference Game� 187

Note how much the state-transition diagram has changed. Not only have the state
numbers assigned to the End and Credits screens changed, but the paths through the
structure have become much more complex. From the Main screen (2) we may go to
the End screen (4) if all 6 differences are found, but there is also an option to go to
the Fail screen (3) when 7 presses have been made without all 6 differences being
found. Both screens 3 and 4 have an option to show the Credits screen (5) for a set
time period before screen 3 or 4 reappears. When the paths through the game start to
become complex (as in this case), the state-transition diagram is a great way of
maintaining an easy-to-follow overview of the whole game process.

The next part of the documentation to be changed is the structured English. Level 1
remains unchanged but the breakdown of some of its steps need to be modified. The
updated logic is shown below with the changes highlighted.

	 3 Play game
		 3.1 Start timer
		 3.2 REPEAT
		 3.3		 IF user selected a difference THEN
		 3.4			 Show ring
		 3.5			 Play sound effect
		 3.6		 ENDIF
		 3.7 		 Update time
		 3.8	UNTIL all 6 differences selected or 7 presses made
	 	 3.9 Delete Main screen resources

	 4 End game	
		 4.1 IF all 6 differences found THEN
		 4.2		 Show End screen
		 4.3 		 Display time taken
		 4.4 ELSE
		 4.5		 Show Fail screen
		 4.6 ENDIF
		 4.7 Display Credits button
		 4.8 DO
		 4.9 		 IF credits button pressed THEN
		 4.10			 Show Credits screen for 5 seconds
		 4.11	 ENDIF
		 4.12 LOOP

Luckily, returning from the Credits screen to either the End or Failed screen isn’t a
problem since the Credits screen is shown on top of the previous screen. When the
Credits screen is removed the appropriate screen will reappear.

Activity 7.4

Update your project to implement the changes described above. This requires
the following steps:

• Copy the file Fail.jpg to the media folder.
• Add a line of code to load the image.
• The ID given to the image should be stored in the variable fail.
• Before the repeat..until loop, create a variable called presscount and
	 set it to zero. Increment this variable every time pressed = 1 is true.
• Add or presscount = 7 to the condition in the until statement.
• Add the code for the new if statement described in the End Game structured
	 English.

Check that the updated version of the program operates correctly by first
winning a game and then losing one. Check that the Credits screen shows
correctly in both cases. Resave your project.

Update the program’s
comments as
appropriate.

188� Hands On AGK BASIC: Spot the Difference Game

Solutions
Activity 7.1

The media folder should contain the following files:

	 AGKSplash.png
	 Background.wav
	 Button.bmp
	 Click.wav
	 Credits.jpg
	 End.jpg
	 Main.jpg
	 Ring.png

The dimension setting lines in setup.agc should be changed
to:

	 width=1024
	 height=768

The complete program code in main.agc is:
rem *************************************
rem * program : Spot the Difference *
rem * version : 1.0 *
rem * language : AGK BASIC v1.02 *
rem * date : 18 Aug 2011 *
rem * author : A. Stewart *
rem * platform : Ipad 1 *
rem *************************************

rem *** Load resources ***

rem *** Load images ***
main = LoadImage(“Main.jpg”)
finish = LoadImage(“End.jpg”)
credits = LoadImage(“Credits.jpg”)
ring = LoadImage(“Ring.png”,0)
button = LoadImage(“Button.bmp”,1)

rem *** Load sounds ***
ringsound = LoadSound(“Click.wav”)

rem *** Load music ***
backgroundmusic = LoadMusic(“Background.wav”)

rem *** Play music ***
PlayMusic(BackgroundMusic)

rem *** Show main screen ***
CreateSprite(1,main)
SetSpriteSize(1,100,100)

rem *** Load rings at image differences ***
CreateSprite(2,ring)
SetSpriteSize(2,-1,10)
SetSpritePosition(2,91,86)
CloneSprite(3,2)
SetSpritePosition(3,51.5,22)
CloneSprite(4,2)
SetSpritePosition(4,49,68)
CloneSprite(5,2)
SetSpritePosition(5,73,66)
CloneSprite(6,2)
SetSpritePosition(6,88.5,66)
CloneSprite(7,2)
SetSpritePosition(7,55.75,62.5)

rem *** Hide rings ***
for c = 2 to 7
 SetSpriteDepth(c,9)
 SetSpriteVisible(c,0)
next c
rem *** Update screen ***
Sync()

rem *** Start timer ***
start = GetSeconds()
CreateText(1,Str(timetaken))
SetTextColor(1,0,0,0,255)
SetTextPosition(1,88,6)

rem *** Set count of differences found ***
found = 0

rem *** Get user clicks until all 6 differences
found ***
repeat
		 rem *** Check for clicked button ***
 pressed = GetPointerPressed()
		 rem *** IF pressed, check for sprite hit ***
 if pressed = 1
 x = GetPointerX()
 y = GetPointerY()
 hit = GetSpriteHit(x,y)
 rem *** IF clicked over hidden ring THEN
 if hit > 1 and hit <=7 and
				 GetSpriteVisible(hit)=0
 rem *** Show ring ***
 SetSpriteVisible(hit,1)
 rem *** Play sound effect ***
 PlaySound(1)
 rem *** Add 1 to differences found ***
 found = found + 1
 endif
 endif
 rem *** Update time so far ***
 timetaken = GetSeconds() - start
 SetTextString(1,Str(timetaken))
 Sync()
until found = 6

rem *** Delete existing sprites ***
for c = 1 to 7
 DeleteSprite(c)
next c
rem *** Delete sound ***
DeleteSound(ringsound)
rem *** Delete text ***
DeleteText(1)

rem *** Show End screen... ***
CreateSprite(1,finish)
SetSpriteSize(1,100,100)
rem *** ... with button... ***
CreateSprite(2,button)
SetSpriteSize(2,15,-1)
SetSpritePosition(2,80,90)
rem *** ...and total time taken ***
CreateText(1,Str(timetaken))
SetTextColor(1,0,0,0,255)
SetTextPosition(1,36,31)
Sync()

rem *** Allow for Credits button press ***
do
 pressed = GetPointerPressed()
 if pressed = 1
 x = GetPointerX()
 y = GetPointerY()
 hit = GetSpriteHit(x,y)
 rem *** IF Credit button pressed THEN ***
 if hit = 2
 rem *** Show credits for 5 secs ***
 CreateSprite(3,credits)
 SetSpriteSize(3,100,100)
 SetSpriteDepth(3,8)
 Sync()
 Sleep(5000)
 rem *** Remove Credits screen ***
 DeleteSprite(3)
 endif
 endif
 Sync()
loop

The main problem is that although the main screen appears
correctly, the End and Fail screens are not positioned
correctly.

Activity 7.2
The new lines (shown in bold) should be placed as follows:

rem *** Reset aspect ratio ***
SetDisplayAspect(768.0/1024.0)

rem *** Show End screen... ***
CreateSprite(1,finish)
SetSpriteSize(1,100,100)

This modification should ensure the End screen is correctly
sized.

Hands On AGK BASIC: Spot the Difference Game� 189

Activity 7.3
The new lines (shown in bold) should be placed as follows:

DeleteText(1)

rem *** Wait before showing next screen ***
Sleep(1000)

rem *** Show End screen ***
CreateSprite(1,finish)

This gives a slight delay before the main screen disappears.

Activity 7.4
The file Fail.jpg should be added to the project’s media file.

The final program code should be:
rem *************************************
rem * program : Spot the Difference *
rem * version : 1.1 *
rem * language : AGK BASIC v1.02 *
rem * date : 18 Aug 2011 *
rem * author : A. Stewart *
rem * platform : Ipad 1 *
rem *************************************

rem *** Load resources ***

rem *** Load images ***
main = LoadImage(“Main.jpg”)
finish = LoadImage(“End.jpg”)
credits = LoadImage(“Credits.jpg”)
ring = LoadImage(“Ring.png”,0)
button = LoadImage(“Button.bmp”,1)
fail = LoadImage(“Fail.jpg”)

rem *** Load sounds ***
ringsound = LoadSound(“Click.wav”)

rem *** Load music ***
backgroundmusic = LoadMusic(“Background.wav”)

rem *** Play music ***
PlayMusic(BackgroundMusic)

rem *** Show main screen ***
CreateSprite(1,main)
SetSpriteSize(1,100,100)

rem *** Load rings at image differences ***
CreateSprite(2,ring)
SetSpriteSize(2,-1,10)
SetSpritePosition(2,91,86)
CloneSprite(3,2)
SetSpritePosition(3,51.5,22)
CloneSprite(4,2)
SetSpritePosition(4,49,68)
CloneSprite(5,2)
SetSpritePosition(5,73,66)
CloneSprite(6,2)
SetSpritePosition(6,88.5,66)
CloneSprite(7,2)
SetSpritePosition(7,55.75,62.5)

rem *** Hide rings ***
for c = 2 to 7
 SetSpriteDepth(c,9)
 SetSpriteVisible(c,0)
next c
rem *** Update screen ***
Sync()

rem *** Start timer ***
start = GetSeconds()
CreateText(1,Str(timetaken))
SetTextColor(1,0,0,0,255)
SetTextPosition(1,88,6)

rem *** Set count of differences found ***
found = 0
rem *** Number of clicks so far is zero ***
presscount = 0
rem *** Get user clicks until all 6 differences
found ***
repeat
		 rem *** Check for clicked(pressed)
 pressed = GetPointerPressed()

		 rem *** IF pressed, ***
 if pressed = 1
			 rem *** Add 1 to clicks ***
			 inc presscount
			 rem *** Check for sprite hit ***
 x = GetPointerX()
 y = GetPointerY()
 hit = GetSpriteHit(x,y)
 rem *** IF clicked over hidden ring THEN
 if hit > 1 and hit <=7 and
				 GetSpriteVisible(hit)=0
 rem *** Show ring ***
 SetSpriteVisible(hit,1)
 rem *** Play sound effect ***
 PlaySound(1)
 rem *** Add 1 to differences found ***
 found = found + 1
 endif
 endif
 rem *** Update time so far ***
 timetaken = GetSeconds() - start
 SetTextString(1,Str(timetaken))
 Sync()
until found = 6 or presscount = 7

rem *** Delete existing sprites ***
for c = 1 to 7
 DeleteSprite(c)
next c
rem *** Delete sound ***
DeleteSound(ringsound)
rem *** Delete text ***
DeleteText(1)
rem *** Wait before showing next screen ***
Sleep(1000)
rem *** Reset aspect ratio ***
SetDisplayAspect(768.0/1024.0)
rem *** IF all differences found ***
if found = 6
	 rem *** Show End screen... ***
	 CreateSprite(1,finish)
	 SetSpriteSize(1,100,100)
	 rem *** ...and total time taken ***
	 CreateText(1,Str(timetaken))
	 SetTextColor(1,0,0,0,255)
	 SetTextPosition(1,36,31)
else
	 rem *** Show Fail screen... ***
	 CreateSprite(1,fail)
	 SetSpriteSize(1,100,100)
endif
Sync()
rem *** ... with button... ***
CreateSprite(2,button)
SetSpriteSize(2,15,-1)
SetSpritePosition(2,80,90)

rem *** Allow for Credits button press ***
do
 pressed = GetPointerPressed()
 if pressed = 1
 x = GetPointerX()
 y = GetPointerY()
 hit = GetSpriteHit(x,y)
 rem *** IF Credit button pressed THEN ***
 if hit = 2
 rem *** Show credits for 5 secs ***
 CreateSprite(3,credits)
 SetSpriteSize(3,100,100)
 SetSpriteDepth(3,8)
 Sync()
 Sleep(5000)
 rem *** Remove Credits screen ***
 DeleteSprite(3)
 endif
 endif
 Sync()
loop

You have reached the end of this extract from

Hands On AGK BASIC
	 by Alistair Stewart

You can purchase the complete publication (approx 900
pages) in either printed or ebook format from

	 The Games Creators [printed version only]
	 http://www.thegamecreators.com/
or
	 Digital Skills [printed or ebook (PDF)]
	 www.digital-skills.co.uk

Other books by Alistair Stewart include:

	 Hands On DarkBASIC Pro Volume 1
	 Hands On DarkBASIC Pro Volume 2
	 Hands On Milkshape

NaplandGames.comVisit for more info

	Ebook Cover
	Extract Start
	Table of Contents
	00 - Foreword
	01 - Agorithms
	02 - Getting Started
	03 - Data
	04 - Selection
	05 - Iteration
	06 - Resources - A First Look
	07 - Spot the Difference
	Extract End

