
Hands On C++17: Starting Classes 523

Starting Classes

In this Chapter:

T Identifying Classes and Objects

T Class Properties: Attributes and Operations

T Class Diagrams

T Creating Classes in C++

T Constructors and Destructors

T Encapsulation

T this

T Inline Methods

T Class Constants

T Static Attributes and Methods

T Overloading << and >>

T Friends

T Classes and Pointers

T Const Methods

T Classes and Arrays

T Designing Classes

524 Hands On C++17: Starting Classes

Classes and Objects

Introduction
C++ is similar in many respects to its parent language C but the obvious difference
is that C++ is an object-oriented language.

The idea behind object-orientation has been around for many decades now, but each
language implements the concept in its own unique style. In this chapter we will
discover the basic ideas behind object-oriented programming and how those ideas
are implemented in C++.

What is an Object?
Real World Objects

Our lives are populated with objects. Typical examples include the digital camera,
TV, cell phones, books, clouds, people, customers, etc.

Some objects, such as cameras, TVs and books have a physical existence; other
objects represent roles or jobs (e.g. customer, shopkeeper) and a final group of objects
are incidents or events such as a date, a traffic jam or joining a website.

One way to describe an object is to write down its characteristics and the operations
that the object can perform. For example, we could describe a camera’s characteristics
by giving its weight, dimensions, lens type, and sensor size while its operations could
be listed as take a picture, zoom, focus, set aperture, view stored images, adjust
image size, delete recorded images, download images to another device, etc.

Non physical objects such as a bank account could be described in a similar way:
with information such as account holder’s name and address, account number, current
balance and operations: list transactions, deposit money in account, withdraw money,
set up a standing order.

Classes and Objects

It is important to differentiate between a general description of a group of identical
objects and an individual object. For example, an architect may create a blueprint for
a house and then a builder would use that design to build a physical house. In
programming, the blueprint is known as a class while the specific item is known as
an object (or instance) of that class. It’s very similar to defining a struct and then
creating a variable of that type.

Activity 16.1

List the physical characteristics of a beach ball and typical tasks performed on
or with a beach ball.

Activity 16.2

Identify each of the following as either a class or an object:

a) Dogs b) Lassie c) Integers d) 27

Hands On C++17: Starting Classes 525

Object-Oriented Programming
An object-oriented approach to software design views a system as containing two
main elements: a collection of objects and the relationships between these objects.

If we take the example of a User Interface (UI), the design will suggest a set of
objects such as buttons, edit boxes, menus, etc. In other applications objects might
include things like a customer’s account, a purchase order, a data file, or a character
in a video game.

Once the objects required by the system have been identified, the relevant
characteristics and operations of the classes to which these objects belong are defined.

In the world of object-oriented design, a class’s characteristics are known as its
attributes while the procedures that can be performed are known as the operations.
Collectively, the attributes and operations are known as the features, properties, or
members of the class.

By far the easiest way to get the hang of all this is to look at a simple example. Back
in Chapter 12 we created a set of functions for use with the DateType structure, so
let’s see how we could make use of this to create a class called Date.

Having identified our class and its properties, we can create a visual representation
of this as shown in FIG-16.1.

Note that for the sake of clarity, only a few of the functions we created in the earlier
chapter are included above.

FIG-16.1

A Basic Class Diagram

 Date

day
month
year

SetDate
GetDayOfWeek
IsLeapYear

Class name

Attributes

Operations

Activity 16.3

In the Imperial measuring system (still in use in the USA) short distances are
measured in yards, feet and inches. There are 12 inches in a foot and 3 feet
in a yard. So if we identified ImperialDistance as a class within a system we
were creating, we would list these three values (yards, feet and inches) as the
attributes of that class. For the moment we can identify only two operations:
one to set the value of the attributes (SetDistance) and one to convert the
distance to metres (ConvertToMetric).

Draw a class diagram similar to that in FIG-16.1 for a class called
ImperialDistance.

526 Hands On C++17: Starting Classes

Taking the design for Date further, each attribute must be defined as a C++ data type
(or another class). In the case of the attributes day, month and year, all three of these
can be defined as int types.

Next we need to add parameters and return types to the operations list. Since we are
working exclusively in C++, we’ll make use of the types available in that language.
A more generic diagram might use other terms when describing attribute and
operation types.

The updated class diagram is shown in FIG-16.2.

There are several things to notice in this version of the diagram:

■ the type is given after the attribute or parameter name

■ the type of value returned by an operation is given at the end of the operation
(operations which do not return a value have no return type)

■ the DateType parameter which was specified for each of these functions when
we last used them in Chapter 12 has been removed.

It is this last point that needs to be explained in some detail.

Those of us of a certain age may remember cassette recorders. These devices
performed record and play operations using magnetic tape cassettes. Just pop a tape
into the machine and record or play. Replace the cassette with a new one and record
or play other sounds. But without a cassette tape in place the device was useless. This
is exactly how our DateType functions we created back in Chapter 12 worked: in
order to use the functions, we had to supply a DateType variable (just as our recorder
needed a cassette) that the function could operate on.

Jump forward to the 21st century and we now have digital recorders. Like the old
cassette players, these can also record and play audio. But this time the storage is
built into the device. All we do is select record or play and the internal storage is
accessed automatically. This is the approach taken by classes. Classes are designed
to contain both the storage requirements (attributes) and the operations that will make
use of that storage. Combing these two elements into a single unit is known
encapsulation.

This means that when an operation accesses day, month or year, it automatically
assumes that this refers to the day month and year attributes held within that particular
object. The attributes of a class are said to have class scope, meaning they can be
freely accessed by any operation in the same class.

FIG-16.2

A Detailed Class
Diagram

 Date

day : int
month : int
year : int

SetDate(d:int, m:int, y:int)
GetDayOfWeek():int
IsLeapYear():bool

Activity 16.4

Add type details to your ImperialDistance class diagram.

Hands On C++17: Starting Classes 527

A class diagram might also specifically state the range of values which an attribute
may have. For example, day must always have a value in the range 1 to 31 while
month must be between 1 and 12. These would be shown in the class diagram as:

 day : {1..31}
 month : {1..12}
 year : int

The operations of a class can be specified using a set of mini-specs in a similar
fashion to those we created in earlier chapters. This time we would also list any
attributes of the class which are read from or written to by the operation. An example
of an operation’s mini-spec is given in FIG-16.3.

For some classes it is more appropriate to have a separate Set operation for each
attribute, but when those attributes are closely linked such as those in a distance, a
date, or a time object, then it is quite valid to have a single Set operation such as
SetDate or SetDistance set the value of more than one attribute.

Classes in C++
Our design is now ready to be coded. In C++ a class’s definition begins with the
keyword class. We can think of this definition as a blueprint for later variables or
objects. In this respect, a class definition is similar to that of a struct.

The keyword class is followed by the class name (e.g. Date, ImperialDistance).
Although there are no fixed rules, generally class names start with a capital letter and
if the name is constructed from several words, each new word starts with a capital.
Underscores are not normally used in a class name.

Activity 16.5

In your ImperialDistance class diagram, specify ranges for inches and feet.

FIG-16.3

A Mini-Spec for the
SetDate Operation

Class : Date
Operation : SetDate
Parameters
 In : d : int
 m : int
 y : int
 Out : None
Attributes
 Read : None
 Written : day, month, year
Pre-condition : d,m,y forms a valid date
Post-condition : day = d
 month = m
 year = y
Description : Sets the date to d/m/y.

Activity 16.6

Create a mini-spec similar to that shown above for the SetDistance operation in
the ImperialDistance class.

 �
Actually, classes can
also be constructed
using the term struct,
but we’ll ignore that
option here.

528 Hands On C++17: Starting Classes

After the class name, enclosed in braces, are an access specifier, the attributes and
operations of the class. The operations are given in the form of function prototypes.

A first attempt at a definition of the Date class is given in below:
class Date
{
 public:
 int day;
 int month;
 int year;

 void SetDate(int,int,int);
 int GetDayOfWeek();
 bool IsLeapYear();
};

Let’s look at the purpose of each section of the code:

class Date This tells the compiler we are declaring a class
and gives the name of the class. By convention,
class names are capitalised.

public: This keyword is the access specifier and tells the
compiler that all the following properties of the
class may be freely accessed by any function -
even functions which are not part of the Date
class.

 int day; These are the attributes of the class and are
 int month; similar to fields within a record.
 int year;

 void SetDate(int,int,int);
 int GetDayOfWeek(); These are the prototypes for the various
 bool IsLeapYear(); functions that will be used to implement
 the operations of the class.

After the class declaration, we add the code for each of the class operations. Since
the code for the class operations is not placed within the braces of the class declaration,
it is necessary to tell the compiler to which class a function belongs. This is done in
the first line of the function. For example, the first line of SetDate() is coded as

 void Date::SetDate(int d, int m, int y)

Notice that this differs from a normal function heading only in that the class name
and scope resolution operator (Date and ::) precedes the function name. The
complete code for the Date class is shown in FIG-16.4.

Activity 16.7

Start a new project called DateClass (with #include and using statements) and
implement the code for class Date as shown above. Save your code.

FIG-16.4

Implementing the Date
Class

#include <iostream>
using namespace std;

class Date
{

Hands On C++17: Starting Classes 529

FIG-16.4
(continued)

Implementing the Date
Class

 public:
 int day;
 int month;
 int year;

 void SetDate(int, int, int);
 int GetDayOfWeek();
 bool IsLeapYear();
};

//**************************************
//*** Date Class Methods ***
//**************************************

// *** Sets the date to d/m/y ***
void Date::SetDate(int d, int m, int y)
{
 // *** Days in each month of year ***
 int daysinmonth[] = {0, 31,28,31, 30,31,30, 31,31,30, 31,30,31};
 //*** If month invalid, exit ***
 if (m < 1 || m > 12)
 return;
 //*** Add 1 to days in February if leap year ***
 daysinmonth[2] += (y%400 == 0)||(y%4 == 0 && y%100 != 0);
 //*** If days in month invalid, exit ***
 if (d <1 || d > daysinmonth[m])
 return;
 //*** If year less than 1, exit ***
 if (y < 1)
 return;
 //*** Assign date ***
 day = d;
 month = m;
 year = y;
}

// *** Returns the day of the week of a date ***
int Date::GetDayOfWeek()
{
	 int	M,	modifiedyear,	C,	Y;
 //*** Calculate M ***
 M = (month + 9) % 12 + 1;
	 //***	Calculate	modified	year	***
	 modifiedyear	=	year	-	M	/	11;
 //*** Calculate C ***
	 C	=	modifiedyear	/	100;
 //*** Calculate Y ***
	 Y	=	modifiedyear	%	100;
 //*** Calculate day of week ***
	 int	dayofweek	=	((static_cast<int>(2.6	*	M	-	0.2)	+	day	+	Y	+	
 Y/4	+	C/4	-	2*C)%7+7)%7;
 return dayofweek;
}

// *** Returns true if the date’s year is a leap year ***
bool Date::IsLeapYear()
{
 return ((year%400 == 0)||(year%4 == 0 && year%100 != 0));
}

 �
We can’t call IsLeapYear()
to check for a leap
year since that method
checks the value stored
in the Date attribute year
whereas we wish to check
the parameter y.

530 Hands On C++17: Starting Classes

The coded version of a class operation is referred to as a method. Think of the code
as the method by which we implemented the operation.

In a large software project our job might be over at this point after we have created
(and tested) a class. It would be other programmers who make use of objects of this
class when writing their own section of the project. We can identify these two groups
of programmers as the class programmers and the application programmers.

The application programmer uses objects from one or more classes, created by the
class programmer, to implement the application design.

One goal of the class designer/programmer is to create a sufficient range of error-free
methods within a class to allow the application programmer to easily achieve the
results required by their project. For example, the present version of the Date class
would be of little use to an application programmer since it does not allow for basic
operations such as adding days to a date, finding out the number of days between two
dates, or comparing two dates for equality.

A second goal of the class programmer is to have written a class in such a way that
the application programmer cannot mishandle objects of that class. We’ll see exactly
what this means in a moment.

Normally, the application programmer will not have access to the source code for a
class but will, instead, have a description of the public operations of that class. This
is exactly the situation we met when using C++’s standard functions such as sin(),
cos(), etc: we had no access to the original code, but nevertheless we have sufficient
knowledge of the purpose, parameters and return value of each function to call the
function appropriately.

If our mythical application programmer requires a Date class object, this is created
like any other variable:

Date d1, d2;

d1 and d2 are now objects of class Date.

Unlike a standard struct construct, the objects d1 and d2 contain not only data
fields, but also their own copies of the routines defined for the class (see FIG-16.5).

Activity 16.8

Modify your DateClass project to match the code given above. To get the code
to compile, add the following line to the end of your program:

 int main(){}

Check that your program compiles.

 �
There are 2.54 cm in
an inch.

Activity 16.9

Start a new project called ImperialDistanceClass and create code for the
ImperialDistance class operations using the Date class as a guideline.

Compile and save your program.

Hands On C++17: Starting Classes 531

Within the methods’ code we will see that the properties day, month and year are
accessed in exactly the way a standard function might access global variables (they
have class scope). This is because the attributes of any class are always freely
available to the methods of that class.

The methods in each object are designed to operate only with the attributes of that
specific object. So, when we execute SetDate() in object d1, it is the contents of the
day, month and year attributes in d1 that will be modified.

The application programmer can access properties embedded in each object using the
same notation as we did with record structures. So expressions such as

 d1.day and d2.month

give access to a data element in each object while expressions such as

 d1.SetDate() and d2.GetDayOfWeek()

give access to methods in each object.

The term
d1.GetDayOfWeek()

will return the day of the week of the date stored within object d1; the term
d2.GetDayOfWeek()

will return the day of the week of the date stored within object d2.

The program in FIG-16.6 demonstrates how the properties of an object are used to
set a date and display which day of the week the date falls on.

FIG-16.5

A Visual Representation
of Two Date Objects day month year

SetDate()

GetDayOfWeek()

IsLeapYear()

day month year

SetDate()

GetDayOfWeek()

IsLeapYear()

d1 d2

Data area

Methods’
code

FIG-16.6

Using a Date Object

#include <iostream>
using namespace std;

class Date
{
 public:
 int day;
 int month;
 int year;

 void SetDate(int, int, int);
 int GetDayOfWeek();
 bool IsLeapYear();
};

532 Hands On C++17: Starting Classes

FIG-16.6
(continued)

Using a Date Object

//**************************************
//*** Date Class Methods ***
//**************************************

// *** Sets the date to d/m/y ***
void Date::SetDate(int d, int m, int y)
{
 // *** Days in each month of year ***
 int daysinmonth[] = {0, 31,28,31, 30,31,30, 31,31,30, 31,30,31};
 //*** If month invalid, exit ***
 if (m < 1 || m > 12)
 return;
 //*** Add 1 to days in February if leap year ***
 daysinmonth[2] += (y%400 == 0)||(y%4 == 0 && y%100 != 0);
 //*** If days in month invalid, exit ***
 if (d <1 || d > daysinmonth[m])
 return;
 //*** If year less than 1, exit ***
 if (y < 1)
 return;
 //*** Assign date ***
 day = d;
 month = m;
 year = y;
}

// *** Returns the day of the week of a date ***
int Date::GetDayOfWeek()
{
	 int	M,	modifiedyear,	C,	Y;
 //*** Calculate M ***
 M = (month + 9) % 12 + 1;
	 //***	Calculate	modified	year	***
	 modifiedyear	=	year	-	M	/	11;
 //*** Calculate C ***
	 C	=	modifiedyear	/	100;
 //*** Calculate Y ***
	 Y	=	modifiedyear	%	100;
 //*** Calculate day of week ***
	 int	dayofweek	=	((static_cast<int>(2.6	*	M	-	0.2)	+	day	+	Y	+	
 Y/4	+	C/4	-	2*C)%7+7)%7;
 return dayofweek;
}

// *** Returns true if the date’s year is a leap year ***
bool Date::IsLeapYear()
{
 return ((year%400 == 0)||(year%4 == 0 && year%100 != 0));
}

int main()
{
 // *** Day names ***
	 char	daynames[7][10]	=	{“Sunday”,”Monday”,”Tuesday”,
 ”Wednesday”,”Thursday”,”Friday”,”Saturday”};

 Date d1; // Date object

 // *** Set date ***
 d1.SetDate(23,11,1963);

Hands On C++17: Starting Classes 533

Although we have a class that will operate successfully as long as the application
programmer makes valid calls to the class methods, there are a few problems with
this code.

The first problem is that should the application programmer attempt a call to the
SetDate() method using invalid parameters, then the contents of the attributes day,
month and year will remain undefined.

Overloading Methods
We saw, when creating traditional functions back in Chapter 12 that we could
overload functions. That is, we could create multiple functions with the same name
as long as their parameter lists differed in some way. We can also do this with the
methods of a class.

To demonstrate overloaded methods we’ll create a second version of SetDate(). This
new version takes two integer values. The first of these is the number of days into the
year (1 to 365/366). The second parameter is the year. For example, 32,2021 would
represent 1/2/2021 (32 days into the year 2021).

The method’s logic creates a date of the form d/m/y by subtracting the days in each
month until we end up with a zero or negative value and then adding back the number
of days in the last month to have been deducted. The methods code is:

//	***	Sets	date	using	days-into-year	(diy)	and	year	(y)	***
void Date::SetDate(int diy, int y)
{
 // *** Days in each month of year ***
 int daysinmonth[] = { 0, 31,28,31, 30,31,30, 31,31,30, 31,
 30,31 };
 //*** If leap year add one day to February ***
 daysinmonth[2] += (y % 400 == 0) || (y % 4 == 0 &&

FIG-16.6
(continued)

Using a Date Object

 // *** Display date details ***
 cout << d1.day << ‘/’ << d1.month << ‘/’ << d1.year <<
 “	was	a	“	<<	daynames[d1.GetDayOfWeek()]	<<endl;
}

Activity 16.10

Modify DateClass to match the code in FIG-16.6 and observe the output
produced.

Activity 16.11

In DateClass, change the call to SetDate() so that the parameters are 29, 2, and
2021. How does this affect the display when the program is run?

Activity 16.12

Modify ImperialDistanceClass creating an object of the class, assigning it a
valid distance and then displaying the equivalent distance in metres.

What happens if an invalid distance (e.g. 2,3,10) is assigned to the object?

534 Hands On C++17: Starting Classes

 y % 100 != 0);
 //*** Calculate month ***
 int remaining = diy;
 int m = 0;
 while (remaining > 0)
 {
 m++;
	 	 remaining	-=	daysinmonth[m];
 }
 remaining += daysinmonth[m];
 //*** Set date ***
 SetDate(remaining, m, y);
}

Constructors and Destructors
Constructors

When an object is first created a special method known as a constructor is executed.
A default constructor is automatically created by C++ for every class, but this default
constructor is of little use since it contains no code! Luckily, we can replace the
default constructor with a version of our own.

Typically, a coded constructor is used to initialise each of the attributes of an object
to a specific value. This will solve the problem we encountered in the last two
Activities.

A constructor method must be given the same name as the class and have no return
type (not even void) but other than that it is prototyped and defined in the same way
as any other method in a class.

A constructor for the Date class which sets day, month and year to 1/1/2001 would
have the prototype

Date();

and be coded as
Date::Date()
{
 day = 1;
 month = 1;
 year = 2001;
};

The coded constructor will automatically replace the default one created by the
compiler.

Activity 16.13

In DateClass, add the second version of SetDate() and test this new method
with the values 60,2020, and 60,2021.

 �
This is known as
a zero-argument
constructor since it
requires no parameters.

Activity 16.14

Modify DateClass, so that the Date class contains the constructor code given
above. What happens this time when you call SetDate() with parameters 29, 2,
and 2021?

Hands On C++17: Starting Classes 535

Overloading Constructors

Like other methods of a class, the constructor can be overloaded. For example, we
could create a second Date class constructor which takes three int parameters and
assigns to the Date object being created.

This would require the prototype (in the class code)
Date(int,int,int);

and the code
Date::Date(int d, int m, int y)
{
 // *** Days in each month of year ***
 int daysinmonth[] = {0, 31,28,31, 30,31,30, 31,31,30,
 31,30,31};

 bool valid = true; // Parameters valid

 //*** If month invalid, invalid parameters ***
 if (m < 1 || m > 12)
 valid = false;
 //*** Add 1 to days in February if leap year ***
 daysinmonth[2] += (y%400 == 0)||(y%4 == 0 && y%100 != 0);
 //*** If days in month invalid, invalid parameters ***
 if (d <1 || d > daysinmonth[m])
 valid = false;
 //*** If year less than 1, invalid parameters ***
 if (y < 1)
 valid = false;
 //*** Assign date ***
 if (valid)
 {
 day = d;
 month = m;
 year = y;
 }
 else
 {
 day = 1;
 month = 1;
 year = 2001;
 }
}

As we can see, the code is similar to that for the first version of SetDate(). However,
rather than exit from the routine when invalid parameters are offered, the method sets
the date attributes to 1/1/2001 rather than leaving them undefined.

In main() we could make use of the new constructor when declaring d1 as a Date

Activity 16.15

Modify ImperialDistanceClass, so that ImperialDistance class contains a
constructor which sets the distance to zero.

What happens this time when you call SetDistance() with parameters are 2, 3,
and 10?

536 Hands On C++17: Starting Classes

object with the line:
Date d1(23,11,1963);

When a Date object is declared in main(), with the line
Date d1;

this will still cause the zero-argument constructor to be executed and the date set to
1/1/2001.

We can even make use of default values for the parameters to a constructor (and other
methods in a class). For example, if we rewrote the prototype for the second Date
constructor to read

Date(int=1,int=1,int=2001);

we end up removing the need for a coded zero-argument constructor since this will
be performed automatically:

Date d1; // Uses default values to set d1 to 1/1/2001
Date d2(23,11,1963); // Overrides default values to set d2 to
23/11/1963

The Copy Constructor

C++ creates not one but two default constructors. We’ve already seen that the first
default constructor does not perform any task, but the second constructor – known as
the copy constructor – allows a new object to be initialised with a copy of an existing
object of the same type.

For example, if we have previously created a Date object with the line
Date d1(1,1,2001);

Activity 16.16

Modify DateClass, adding the second constructor given above to the Date
class.

Test the new constructor by initialising d1 to 23/11/1963 and checking that the
appropriate value is assigned.

Activity 16.17

Modify DateClass, so that the zero-argument constructor can be removed.

Check that the default value works to create a Date object set to 1/1/2001.

Activity 16.18

Modify ImperialDistanceClass, adding a three-argument constructor (int,
int, int) with default values 0,0,0.

Test the constructor, checking that the appropriate value is assigned to any
ImperialDistance object created.

Hands On C++17: Starting Classes 537

then we can create a new Date object containing a copy of the first date using one of
the following lines

Date d2{d1};
Date d2(d1);
Date d2 = d1;

Each of these options makes use of the copy constructor to copy the values held in
the attributes of d1 into the corresponding attributes of d2.

The copy constructor’s code for the Date class is equivalent to:
Date::Date(const Date& d)
{
 day = d.day;
 month = d.month;
 year = d.year;
};

Note that the parameter to the copy constructor is a const reference. This is a
requirement of all copy constructors. For example, if we were to write a copy
constructor for the ImperialDistance class, its first line would be

ImperialDistance::ImperialDistance(const ImperialDistance& d)

As with the zero-argument constructor, we are free to override the copy constructor
but for simple classes, where none of the attributes are pointers, this is usually
unnecessary.

The Class Assignment Operator

Although not a constructor, this is an appropriate point to mention the other piece of
code that C++ generates for free when we create a class - the assignment operator.

If we have two class objects, then we can copy the contents from one object to the
other using the standard assignment operator:

 d1 = d2;

This default assignment operator, like the default copy constructor, copies the
contents of every attribute (in this case, day, month and year) from the right-hand
object (d2) to the corresponding fields in the left-hand object (d1).

For regular type attributes this logic will normally be fine, but when any of the
attributes involved are pointers, then we may want to override this version of the
assignment operator with our own code. We’ll see an example of this later.

Note that in the following example, the second line will use the copy constructor
while the third makes use of the assignment operator:

 Date d1(23,11,1963), d2;
 Date d3(d1); //Copy constructor
 d2 = d1; //Assignment operator

Activity 16.19

In DateClass, check out the copy constructor of the Date class by first creating
a Date object, d1, set to 23/1/2001 and then creating a new Date object, d2,
which is initialised with a copy of the values in d1. The value of d2 should be
displayed.

 �
Here we are assuming
d1 and d2 are Date
objects.

538 Hands On C++17: Starting Classes

Even if we think we are using the assignment operator as in the second line below
Date d1(26,10,1961);
Date d2 = d1;

we’re not! Any assignment to an object in the line in which that object is declared
always makes use of a constructor.

Typecasting and Constructors

As we saw in an earlier chapter, C++ can automatically convert values from one type
to another. So the line

double x = 21;

will convert the int value 21 to a double before storing that value in x.

The same automatic conversion is possible with class objects. For example, if we
were to write

Date d1;
d1 = 21;

then the int value 21 would automatically be converted to a date.

The reason for the result obtained by Activity 16.20 is that when presented with a
value which is not of the same class as the object being assigned the value, C++
examines the constructors available for that class to see if any of these can accept the
value being assigned as a valid parameter. If it can, then that constructor is executed
and the Date object created is used in the assignment. In the case of the statement
above, the Date class has a constructor whose prototype is

Date(int=1, int=1, int=2001);

Since the parameters have default values, when presented with a single value, 21,
C++ uses this as the first parameter to the constructor and uses the default values (1
and 2001) for the remaining two parameters.

We can also use a class constructor explicitly along with the class assignment operator
to assign a value to an object. Hence,

Date d1;
d1 = Date(23,11,1963);

creates an unnamed Date object and assigns its value to d1.

explicit

The fact that C++ will make use of a constructor to automatically convert a value to
an object of a class is not always desirable. For example, it’s a bit of a stretch to think
that a program converting the value 21 to the date 21/1/2001 would be acceptable.

To control this sort of situation, we can tell our constructor not to indulge in these
automatic conversions by adding the keyword explicit at the start of a constructor’s
prototype. In the case of the Date class constructor, this would mean that the prototype

Activity 16.20

In DateClass, modify main() so that d2 is assigned the value 21 after previously
having been created holding a copy of d1. What value is displayed?

Hands On C++17: Starting Classes 539

would now read
explicit Date(int = 1, int = 1, int = 2001);

There is no need to make any changes to the constructor’s definition.

Now, if we were to attempt the line
d2 = 21; //d2 is a Date object

the compiler would throw up an error. The only way to have this line accepted is to
explicitly cast 21 to a Date object:

d2 = static_cast<Date>(21);

With this explicit request to convert 21 to a Date object, the compiler will again make
use of the constructor to perform the conversion from int to Date.

Destructors

A destructor is a function whose code is automatically executed when an object has
its space deallocated. Again, C++ automatically creates a class’s destructor, but we
can override this by creating our own.

A class’s destructor is named after the class to which it belongs. However, to
distinguish it from the constructor, the name must begin with a tilde (~) character. A
destructor cannot return a value nor take any parameters.

We are only likely to need a destructor when a class contains a raw pointer attribute
which references dynamically allocated space (smart pointers will handle the release
automatically). Other reasons a class may require a destructor is when it needs to
release some resource such as a file, or internet connection.

In these situations the destructor’s code would free up the space referenced by the
raw pointer, close the file, or disconnect from the internet. We’ll see an example of a
class which makes use of dynamic space in the next chapter.

For the moment, let’s create a trivial destructor for the Date class which simply
displays a “Date object deleted” message.

This requires the class to include the following prototype
~Date();

and the code
Date::~Date()
{
	 cout	<<	“Date	object	deleted\n”;
};

Activity 16.21

Modify DateClass, to create an explicit constructor. What error do you get
when you attempt to convert 21 automatically to a date?

Change the assignment line to explicitly convert 21 to a Date object. What
happens when you compile and run the program this time?

540 Hands On C++17: Starting Classes

Data Hiding
A problem with the Date class is that the application programmer is free to bypass
the SetDate() method entirely and just set the values held in attributes day, month
and year directly with code such as

Date d1;
d1.day = 2
d1.month = 1;
d1.year = 1950;

If they use this approach, then there are no safeguards to stop an invalid value being
stored. For example the line

d1.month = 13;

will execute without a complaint and any other methods which assume the date is
valid will return unpredictable results.

To overcome this problem we can restrict the application programmer’s access to
some of the properties in a class. For example, by stopping access to day, month and
year, we remove any chance of invalid values being stored within those attributes.

Hiding properties in this way is known as data hiding.

private

The application programmer has direct access to the attributes day, month and year
in any Date objects he creates because those attributes are marked as public in the
class definition. However, properties can also be labelled as private. Private
properties in objects created by the application programmer’s code cannot be
accessed directly but may still be accessed via the methods of the class.

So to implement this change in Date we re-code the class declaration as
class Date
{
 private:
 int day;
 int month;
 int year;
 public:
 Date(int=1, int=1, int=2001);
 void SetDate(int,int,int);
 void SetDate(int,int);
 int GetDayOfWeek();
 bool IsLeapYear();
};

With this new version of the class, the application programmer can no longer gain

Activity 16.22

Modify DateClass, so that the Date class includes the destructor coded above.

Run the program. Is the destructor message displayed?

After testing, remove the destructor’s code from the Date class.

Hands On C++17: Starting Classes 541

direct access to the three attributes of the class. Attempts to use statements such as
d1.month = 2;

will now fail to compile. If an object’s attributes are to have their contents changed,
then the SetDate() method must be employed:

d1.SetDate(23,11,1963);

And now the side-effect of marking attributes as private becomes apparent. Not
only have we stopped the application programmer from storing values directly in
day, month and year, but we have also stopped him from discovering what values are
already stored there! private means absolutely no access - even if we only want to
look at the value held.

To get round this we need to add new functions which do nothing more than return
copies of the values in the class’s attributes. For example, if we want to find out what
value is stored in the days attribute we would write a new method as shown below:

int Date::GetDay()
{
 return day;
}

With this code (and the method prototype) embedded in the class, the application
programmer, who has discovered that

cout << d1.day;

causes a compilation error, can now write
cout << d1.GetDay();

It is not only attributes that can be labelled as private – methods can be too. It is only
appropriate to make helper functions private. A helper function is designed only to
help in the coding of some other method and not as a function we wish the application
programmer to gain access to. To stop that access, the helper function should be
marked as private. Going back to the functions we created for DateType in Chapter
11, DateToJDN() and JDNToDate() are good examples of helper functions since they
were only needed so that the functions AddDays() and DaysDifference() could be
coded.

We will start by adding these two helper functions to our Date class - but this time
giving them slightly different names. The class declaration now reads:

class Date
{

Activity 16.23

Modify DateClass, so that the attributes of the class are private. What happens
when you try to compile the program?

Activity 16.24

Modify DateClass, adding new methods GetDay(), GetMonth() and GetYear()
to the class.

Uses these new methods in main() to allow the contents of the Date object d2
to be displayed.

542 Hands On C++17: Starting Classes

 private:
 int day;
 int month;
 int year;

	 	 long	ToJDN();
	 	 Date	FromJDN(long);

 public:
 Date(int=1,int=1,int=2001);
 void SetDate(int, int, int);
 void SetDate(int,int);
 int DayOfWeek();
 bool IsLeapYear();
 int GetDay();
 int GetMonth();
 int GetYear();
};

And the new methods are coded as:
//	***	Returns	the	JDN	of	the	date	***
long	Date::ToJDN()
{
	 int	a	=	(14	-	month)/12;
	 int	m	=	month	+	12*a	-	3;
	 int	y	=	year	+	4800	-	a;
	 long	result	=	day	+	(153*m	+	2)	/	5	+	365*y	+	y/4	-	y/100	+	
 y/400		-	32045;
 return result;
}

//	***	Sets	date	to	eqivalent	of	JDN	***
Date	Date::FromJDN(long	jdn)
{
			int	f	=	jdn	+	1401+(((4	*	jdn	+	274277)/146097)*3)/4	-38;
 int e = 4 * f + 3;
 int g = (e % 1461)/4;
 int h = 5 * g + 2;
 Date d;
 d.day = (h % 153)/5 + 1;
 d.month = (h/153 + 2) % 12 + 1;
			d.year	=	e/1461	-	4716	+	(12	+	2	-	d.month)/12;	
 return d;
}

Notice that this second method returns a Date object. This is no different in
implementation than our previous version of the function, JDNToDate(), which
returned a DateType structure.

Overloading Operators
All the things we could achieve with standard functions can also be done within a
class. This includes overloading operators. Implementing operator+ in the Date
class would require the following code:

Activity 16.25

Add the two private functions ToJDN() and FromJDN() to Date class. Check
that your code compiles.

Hands On C++17: Starting Classes 543

//*** Add d days to date ***
Date Date::operator+(int d)
{
	 Date	dt	=	FromJDN(ToJDN()+d);
 return dt;
}

 Notice that it makes use of the two private functions in calculating the result.

As before, we have two ways of using an overloaded operator. We can treat it as just
a standard method allowing the format

Date	dt2	=	dt1.operator+(7);	//Add	one	week	to	date

or we can treat it in the same way as standard operators when dealing with normal
numeric values:

Date	dt2	=	dt1	+	7;	//Add	one	week	to	date

The Call Operator and Functors
The opening and closing parentheses (known as the call operator since it used
whenever we call a function) can also be overloaded. The code associated with the
call operator is executed when parentheses are given immediately after an existing
object. We’ll demonstrate this by creating a simple class A with a single feature
which overloads the call operator. (see FIG-16.7).

Activity 16.26

Add operator+ as a public method to Date class. To check that your code
is correct, create a new version of main() which sets a Date object d1 to
30/5/2023 then adds 7 days to the date and displays the result.

Activity 16.27

Add the following operators to the Date class:
 -		(subtraction: returns days between two dates)
 - (subtraction: returns a date after subtracting a number of days)
 == (test for equality: returns true or false).
 != (test for inequality: returns true or false).
Modify main() to test each operation.

FIG-16.7

The Call Operator

#include <iostream>
using namespace std;

class A
{
 public:
 void operator()();
};
void A::operator()()
{
	 cout	<<	“Call	operator	executed\n”;
}
int main()
{
 A test; //Create object test
 test(); //Execute the call operator
}

544 Hands On C++17: Starting Classes

Notice that the object, test, begins to look a lot like a function. If we saw the program’s
test();

line in isolation from the remainder of the code, we would, quite reasonably, think
test was the name of a function rather than an object. Because of this, any class that
implements a call operator method is classified as a functor – a class whose objects
act like functions.

Like any method, the call operator can accept parameters. For example, we could
change the code for class A’s call operator to

void A::operator()(int v)
{
	 cout	<<“Call	operator	executed.	Parameter	value	”<<v<<	endl;
}

Although this represents a trivial example of a functor, we’ll discover in a later
chapter how widely used this option is.

Inline Methods
In Chapter 12 we learned that inline functions can be used to create a more efficient
program by replacing the call to a function with the function’s code thereby saving
the overhead of parameter passing and saving a return address. A class method can
be defined as inline in one of two ways. The first option is to use the inline keyword
in the method definition, the second is simply to embed the method’s code within the
class declaration. For example, if we were to make IsLeapYear() and inline function
we could write

inline bool IsLeapYear()
{
 return ((year%400 == 0)||(year%4 == 0 && year%100 != 0));
}

or we could move the code for the function into the class:
class Date
{
 private:
 int day;
 int month;
 int year;
	 	 long	ToJDN();
	 	 Date	FromJDN(long);
 public:
 Date(int=1,int=1,int=2001);
 void SetDate(int, int, int);

Activity 16.28

Start a new project called TestCallOperator and implement the code given in
FIG-16.7.

Modify the call operator code to accept an int parameter and include the value
of the parameter in the cout statement as shown above.

Modify the call parameter again to accept two parameters and to return the
product of the two values. Also modify the code in main() to display the
returned value.

 �
Defining a function
as inline only acts
as a request to the
compiler. The final
decision on whether to
do so is left up to the
compiler.

Hands On C++17: Starting Classes 545

 void SetDate(int, int);
 int DayOfWeek();
 bool IsLeapYear()
 {
 return ((year%400 == 0)||(year%4 == 0 &&
 year%100 != 0));
 }
 int GetDay();
 int GetMonth();
 int GetYear();
 Date operator+(int);
	 	 int	operator-(Date);
	 	 Date	operator-(int);
 bool operator==(Date);
 bool operator !=(Date);
 void operator+=(int);
};

The this Pointer
Returning to the Date class, another operator we could overload is += allowing us to
add a number of days to the current date. For example, with this operator overloaded
the application programmer could write lines such as

Date d1(23,11,1963);
d1 += 10;

However, when we come to code such a routine for our class, we run into an
unexpected problem:

void Date::operator+=(int d)
{
	 	???	=	FromJDN(ToJDN()+d);
}

We want the value calculated by the method to be assigned to the Date object which
has called this method, but how do we refer to that object since the actual object
executing the routine can be different each time the operation is used? Luckily, C++
solves this problem by maintaining a pointer to whatever object is currently executing
a method of a class.

The pointer is called this and is available for use within every standard method of a
class. So, when we are writing a method within a class and wish to refer to the object
which is currently executing that method, we can dereference the this pointer. This
allows us to overcome our problem in writing the code for the += operator since it
can now be coded as:

void Date::operator+=(int d)
{
	 	*this	=	FromJDN(ToJDN()+d);
}

Activity 16.29

Add operator+= as a public method to Date class.

To check that the method operates correctly set a Date object to 23/12/1980 and
add 10 days to the date, displaying the new date.

546 Hands On C++17: Starting Classes

In fact, C++ makes extensive use of the this pointer, secretly adding it to any code
we write when referencing attributes of a class within one of its methods. For
example, when we write

bool Date::IsLeapYear()
{
 return ((year%400 == 0)||(year%4 == 0 && year%100 != 0));
}

The C++ compiler secretly changes this to:
bool Date::IsLeapYear(Date *this)
{
	 return	((this->year%400	==	0)||(this->year%4	==	0	&&	
 this->year%100	!=	0));
}

This is necessary because, although we may imagine each object having its own copy
of every member defined for that class, the reality is that, in order to optimise storage
requirements, each object has its own copy of every attribute but shares use of a
communal copy of the code for the class’s methods with every other object of that
class.

So, when executing a method, some mechanism is needed to make sure the attributes
of the appropriate object are accessed. This requirement is fulfilled by the this
pointer. (see FIG-16.8).

FIG-16.8

Why the this Pointer
is Required when
Executing Methods

day month year day month year

d1 d2

d1 d2

Conceptual Model

Reality Model

Each object has its own
set of attributes but uses
pointers to access a
shared set of methods.

The methods need to
make use of the this
pointer to know which
set of attributes should
be accessed.

day month year

SetDate()

GetDayOfWeek()

IsLeapYear()

SetDate()

GetDayOfWeek()

IsLeapYear()

day month year

SetDate()

GetDayOfWeek()

IsLeapYear()

Hands On C++17: Starting Classes 547

And although C++ automatically adds the this-> prefix to any attribute accessed
within a class’s methods, we may also add this prefix explicitly without it objecting.

We need to make use of the this pointer again if we want to overload the ++ and
-- operators for our Date class. For example, the pre-fix version of ++ would be
coded as

Date Date::operator++()
{
	 *this	=	FromJDN(ToJDN()+1);
 return *this;
}

while the post-fix version would be written as
Date Date::operator++(int)
{
	 DateType	result	=	*this;
	 *this	=	FromJDN(ToJDN()+1);
 return result;
}

Class Constants
A class declaration can contain named constants. For example, we might begin our
Date class declaration by adding a constant for the number of days in a standard year:

class Date
{
 private:
	 	 const	int	DAYSINYEAR	=	365;

Although the compiler has not objected to the new line of code we’ve added, it
suddenly objects to all the assignment statements that attempt to copy one Date value
to another.

When we copy the contents of one Date object to another as in the line

Activity 16.30

Modify the IsLeapYear() method in the Date class so that it explicitly uses this
->	when accessing attributes of the class.

Check that this has no effect on the program’s compilation or execution.

Return the code for IsLeapYear() to its original version.

Activity 16.31

Add both versions of ++ and -- as public methods in Date class. Check that all
four new methods operate correctly.

Activity 16.32

Add the DAYSINYEAR constant given above to the Date class and compile
your program. What error messages are produced?

548 Hands On C++17: Starting Classes

Date dt1(23,11,1963),dt2;
dt2 = dt1;

every attribute of dt1 is copied to the corresponding attribute of dt2. However, when
a class contains a constant value, this approach is no longer appropriate since we
cannot attempt to assign a constant a value (even if it is the same value as it already
contains).

Because of this, we are forced to define a replacement version of the = operator
within the Date class so that no attempt to copy the const value is included. Such an
operation has the prototype

Date& operator=(const Date&);

and is coded as
//*** Copies d to current object ***
Date& Date::operator=(const Date& d)
{
 day = d.day;
 month = d.month;
 year = d.year;
 return *this;
};

Notice that the method is designed to return a reference to the object being assigned
the new value. Although not necessary for simple statements such as

dt1 = dt2;

the return value is required for more complex statements such as

dt1 = dt2 = dt3;

Static Properties
When a standard const value is defined within a class, every object of that class
acquires its own copy of that const (see FIG-16.9).

Activity 16.32

Add the necessary code for the = operator to the Date class. Does the program
compile?

Add another method to the Date class called GetDaysInYear() which returns the
number of days in the year (using the value held in year to determine if it’s a
leap year). The method should make use of the DAYSINYEAR constant.

Modify main() to display the number of days in the year of the date within
object d1.

FIG-16.9

How a Class const
Value is Stored

d2

day month year

SetDate()

GetDayOfWeek()

IsLeapYear()

d1

DAYSINYEAR
365

daymonthyear

SetDate()

GetDayOfWeek()

IsLeapYear()

DAYSINYEAR
365

Hands On C++17: Starting Classes 549

This situation is rather inefficient and also unnecessary. We’ve already seen how
objects share the same method code for reasons of efficiency. We can do the same
thing with constant values declared within a class, creating only a single instance of
that constant and sharing it between all objects of that class (see FIG-16.10).

To achieve this effect we must declare the constant as a static const as in the line
class Date
{
 private:
 static	const	int	DAYSINYEAR	=	365;

Another advantage of using a static constant is that it removes the need to redefine
the = operator for the class since the default assignment operator code has no effect
on static attributes.

If we change the declaration of the DAYSINYEAR attribute making it public, and then
create two Date class objects, we could access the attribute in the usual fashion:

Date d1, d2;
cout	<<	d1.DAYSINYEAR	<<	endl;
cout	<<	d2.DAYSINYEAR	<<	endl;

Static properties of a class have another strange property: they come into existence
the moment a program begins execution. This means they can exist before any
objects of that class are declared:

int main()
{
	 //	DAYSINYEAR	exists	now
	 cout	<<	“Hello	world\n”;
 int no = 12;
 Date d1; //Date object exists now
 ...

To allow the application programmer to access the static access before creating a
Date object, the following syntax can be used:

class_name::static_value_name

As we can see, the class name is used rather than an object name and the scope
resolution operator replaces the normal member selector. So, if we wanted to access
DAYSINYEAR before Date objects d1 or d2 are created, we would use the expression

FIG-16.10

How a Class static
const Value is Stored

d2

day month year

SetDate()

GetDayOfWeek()

IsLeapYear()

d1

DAYSINYEAR daymonthyear

SetDate()

GetDayOfWeek()

IsLeapYear()

DAYSINYEAR

365

A single instance
of the attribute is
shared between

all objects

550 Hands On C++17: Starting Classes

Date::DAYSINYEAR

If we were to return the DAYSINYEAR class constant to private status, the application
programmer could only gain access to its constants if a public get method is included
to retrieve the constant’s value.

The trouble now is that although it is fine to call the new method when accessed via
a Date object as in the expression d1.GetDAYSINYEARconst(), it is not valid to
attempt to call it using the class name. This means that although the static constant
DAYSINYEAR exists before any Date object is created, there is no way to access it
until such an object is brought into existence.

Static Methods

Methods, as well as attributes can be defined as static. When this is done, the method,
like the attribute, exists even before any objects of that class are declared. One reason
for creating a static method is to allow access to private static attributes before any
class objects are created. For example, if we change the prototype for Date’s
GetDAYSINYEARconst() to

static	int	GetDAYSINYEARconst();		

then, now that we have a static method, we are free to use the expression
Date::GetDAYSINYEARconst()

in our program.

Gaining access to private static attributes is not the only reason to use static methods.
Sometimes we want to collect together a set of functions which have a common

Activity 16.33

Change Date class’s DAYSINYEAR to a public static constant then remove the
prototype and definition of the = operator from the Date class.

Write a main() function which first displays the value held in DAYSINYEAR
using the term Date::DAYSINYEAR and then declares a Date object called d1
before displaying the value in DAYSINYEAR for a second time using the terms
d1.DAYSINYEAR.

Activity 16.34

Change Date class’s DAYSINYEAR to a private static constant.

Add a public method called GetDAYSINYEARconst() which returns a copy of
the value in DAYSINYEAR.

In main(), declare a Date object called d1 and then attempt to display the
value held in DAYSINYEAR using the terms d1.GetDAYSINYEARconst() and
Date::GetDAYSINYEARconst().

 �
The term static is
not required in the
function’s heading.

Activity 16.35

Add the word static to the start of Date class’s GetDAYSINYEARconst()
prototype.

Hands On C++17: Starting Classes 551

theme (just as we might sit all our programming books on the same shelf).

These functions are not designed to manipulate a common set of attributes but are
placed together to give a neat and organised approach. For example, the Java
programming language holds all of its maths functions within a class called Math.

In this Math class we will find functions to perform such mathematical operations as
square root, sine, cosine, tangent, raise to a power, etc. Now, if we want to find, say,
the square root of a number, it wouldn’t make sense to have to create a Math object
in order to access the square root method. Instead, since all the methods are static, we
would just write the Java equivalent to:

	 cout	<<	Math::Sqrt(25.78)	<<	endl;

Static methods are also referred to as class methods.

Since a static method can be called without an object of its class being created, such
methods cannot access standard (non-static) attributes of the class.

Static Variables

It’s not just constant values that can be declared as static. Regular attributes can also
be static, meaning that the only one instance of that property is created irrespective
of the number of objects that exist.

One common use for such an attribute is to keep a count of the number of objects of
a class that currently exist. For example, let’s assume we wish to keep a count of the
number of Date objects that exist in a program. We would start by adding a new static
attribute and operation to the class:

class Date
{
 private:
	 	 static	const	int	DAYSINYEAR	=	365;
 static int count;
 int day;
 int month;
 int year;

	 	 long	ToJDN();
	 	 Date	FromJDN(long);

 public:
 Date(int=1,int=1,int=2001);
 void SetDate(int, int, int);
 void SetDate(int, int);
 int GetDayOfWeek();
 inline bool IsLeapYear();
 int GetDay();
 int GetMonth();
 int GetYear();
 Date operator+(int);
	 	 int	operator-(Date);
	 	 Date	operator-(int);
 bool operator==(Date);
 void operator+=(int);
 Date operator++();
 Date operator++(int);
	 	 Date	operator--();
	 	 Date	operator--(int);

552 Hands On C++17: Starting Classes

 int GetDaysInYear();
	 	 static	int	GetDAYSINYEARConst();
 static int GetCount();
 ~Date();
};

In the Date class constructor we will increment count:
//*** Initialises new date object to d/m/y ***
Date::Date(int d, int m, int y)
{
 // *** Days in each month of year ***
 int daysinmonth[] = {0, 31,28,31, 30,31,30, 31,31,30,
 31,30,31};

 bool valid = true; // Parameters valid

 //*** If month invalid, invalid parameters ***
 if (m < 1 || m > 12)
 valid = false;

 //*** Add 1 to days in February if leap year ***
 daysinmonth[2] += (y%400 == 0)||(y%4 == 0 && y%100 != 0);

 //*** If days in month invalid, incalid parameters ***
 if (d <1 || d > daysinmonth[m])
 valid = false;

 //*** If year less than 1, invalid parameters ***
 if (y < 1)
 valid = false;

 //*** Assign date ***
 if (valid)
 {
 day = d;
 month = m;
 year = y;
 }
 else
 {
 day = 1;
 month = 1;
 year = 2001;
 }
 //*** Add one to count of Date objects **
 count++;
}

and in the destructor, we will decrement count:
//*** Class destructor ***
Date::~Date()
{
 //*** Decrement count of Date objects ***
	 count--;
}

The other new method, GetCount() returns the value held in count:
//*** Returns the number of Date objects existing ***
int Date::GetCount()
{
 return count;
}

Hands On C++17: Starting Classes 553

There’s one last thing we need to do and that is to set the initial value for our new
static attribute. This is done using the line

int Date::count = 0;

which is traditionally placed immediately after the class declaration.

Overloading << and >>
By now you must be tired of always writing code such as

cout << d1.GetDay() << ‘/’ << d1.GetMonth() << ‘/’ <<
d1.GetYear() << endl;

How much nicer it would be to simply write
cout << d1 << endl;

and get the same result.

To do this, we need to overload the << operator.

Our first guess at how to do this might be to add the overloaded operator to the Date
class in just the same way as we added previous operators. But unfortunately, things
are a little more complicated than that.

We have made use of the command cout since the very first program back in Chapter
3, so perhaps it will come as something of a surprise to realise that cout isn’t a
command at all, but is in fact an object of the class ostream. When we write a line
of code such as

cout << 12;

we are actually making use of the << operator as defined within the ostream class.
We could just as validly rewrite the line as

cout.operator<<(12);

This should make it clearer that if we want to write a line such as

Activity 16.36

Change the code for Date class to include the attribute count as defined above
along with the GetCount() method.

Modify the constructor to increment count and create a destructor which
decrements count.

Test the new class using the following code:
int main()
{
			cout	<<	“There	are	“	<<	Date::GetCount()	<<	“	Date	objects\n”;
 Date dt1(23,11,1963);
			cout	<<	“There	are	“	<<	Date::GetCount()	<<	“	Date	objects\n”;
 {
 Date dt2;
						cout	<<	“There	are	“<<Date::GetCount()	<<	“	Date	objects\n”;
 }
			cout	<<	“There	are	“	<<	Date::GetCount()	<<	“	Date	objects\n”;
}

 �
We’ll be covering
the ostream class
in detail in a later
chapter.

554 Hands On C++17: Starting Classes

cout << d1; //d1 is a Date object

which could be rewritten as
cout.operator<<(d1);

that it is actually the code for the ostream class that needs to be changed to
accommodate outputting a Date class object and not, as we first thought, the Date
class.

Now, since we do not have access to the source code for the ostream class, modifying
its code is not an option. This means we have to resort to creating a standard function,
which is not part of any class, to overload the << operator.

The function will take an ostream object reference and a Date object reference as its
parameters:

void operator<<(ostream& ct, Date& d)

Our new function has no access privileges to private properties of either class so its
code needs to make use of methods such as GetDay() to access the required attributes.

The code for the complete routine is
void operator<<(ostream& ct, Date& d)
{
 ct << d.GetDay() << ’/’<< d.GetMonth() << ’/’<< d.GetYear();
}

Now, rather than write the correct but unwieldy
operator<<(cout,d1) //Assuming d1 is a Date object

we can write
cout << d1;

The function isn’t quite complete yet, because it needs to return an ostream& value
to allow it to be used in longer output statements. For example, if we wanted to write

cout << d1 << d2;

there would be a problem. This is more clearly seen if we rewrite the statement as
operator<<(operator<<(cout,d2),d1);

From this we can see that the value returned from the inner function call is required
as the first parameter to the outer function call. To achieve the required results, our
function needs to return a value of type ostream&. The updated version of the function
is

ostream& operator<<(ostream& ct, Date& d)
{
 ct << d.GetDay() << ’/’<< d.GetMonth() << ’/’<< d.GetYear();
 return ct;
}

Friends

Writing functions which are not part of the Date class and yet are obviously logically
part of that class seems a bit disjointed. We can overcome this problem by defining
our new function as a friend of the Date class.

class Date
{
 private:

Hands On C++17: Starting Classes 555

 .
 .
 public:
 .
 .
 friend ostream& operator<<(ostream&,Date&);
};

The advantage of declaring the overloaded operator as a friend of the Date class is
that it now has access to the private attributes, meaning we can use a term such as

d.day

rather than
d.GetDay()

allowing us to rewrite the code for operator<<() as:

ostream& operator<<(ostream& ct, Date& dt)
{
 ct << dt.day <<’/’ << dt.month << ‘/’ << dt.year;
 return ct;
}

At this point, it won’t now come as too much of a surprise to learn that cin is also an
object. It is an instance of the class istream.

This time we will cheat a little and use scanf() within the new function rather than
cin since we can then enter the / symbols between each part of the date. The new
function has the following code.

istream& operator>>(istream& cn, Date& dt)
{
	 scanf(“%d/%d/%d”,&dt.day,	&dt.month,	&dt.year);
 return cn;
}

Notice that we still need an istream parameter which is returned by the function
even though the parameter is not otherwise used within the code.

This latest function highlights the problem with friends - they get to override the
privacy of the attributes and unless they take the same precautions as regular class
methods, there is the danger that they may allow the contents of an object to be
corrupted.

Activity 16.37

Add operator<< as a friend in the Date class and test that the new operator
works correctly by using it to display the contents of a Date object.

Activity 16.38

Add operator>> as a friend in the Date class.

Test the new operator by reading and displaying the value of a Date object.

556 Hands On C++17: Starting Classes

More Friends
Another reason to create functions which are not part of a class is highlighted by the
following example.

If we create a Date object and then add a few days to the value, we could do this with
the following code:

Date d1(22,11,1963), d2;
d2 = d1 + 1; // d2 is 23/11/1963

This works because we defined the + operator in the Date class. But remember what
is really happening here is more accurately reflected when we rewrite the last line as

d2 = d1.operator+(1);

so it should come as no surprise that rearranging the assignment statement to read
d2 = 1 + d1;

won’t work. This time the + is not the operator defined in Date – the elements are in
the wrong order. And because of this, the program will not compile.

However, we can solve our problem by writing a separate, standard function:
Date operator+(int days, Date& d)
{
	 Date	dt	=	d.FromJDN(d.ToJDN()	+	days);
 return dt;
}

Since we made the methods FromJDN() and ToJDN() private, this function will only
compile if we make it a friend of the Date class, thereby giving access to the two
routines.

More on Class Diagrams
We first saw class diagrams at the start of this chapter, but since then we have covered
many additional class features which it would be useful to identify within a diagram.

The following features can be added:

+ at the start of a property indicates that it is public.

- at the start of a property indicates that it is private.

at the start of a property indicates that it is protected.

Activity 16.39

Modify the code for operator>> so that only a valid date will be stored in the
Date object. Where the date entered is invalid, the Date object’s values should
remain unchanged.

Activity 16.40

Add the new operator+ function described above as a friend of the Date class
and test it using a second Date object which is set to the first Date object’s date
+ 10 days.

 �
We’ll talk about
protected attributes in
the next chapter.

Hands On C++17: Starting Classes 557

= value after a property shows its initial value.
OR
after a parameter, giving it’s default value.

underlined below a static property.

«constructor»name for constructors.

«destructor»name for destructors.

«friend»name for functions which are friends of the class.

in, out, inout one of these terms can be used in front of each operation
parameter to indicate which direction a parameter’s
value is being passed.

When naming the constructors and the destructor in a class diagram, we can use the
C++ convention of naming them after the class or you can use other terms such as
Create and Destroy or New and Delete.

There are no class diagram conventions for showing finer details such as the fact that
a method uses const parameters or does not modify any of the attributes of the class.
In any case, the decision to use const parameters or call by reference variables is
often a decision made at a later stage in the development process.

Of course, since the purpose of a class diagram is an aid to our task, we are really free
to add whatever detail we might find helpful later when we come to develop our code.
FIG-16.11 shows a class diagram for the latest version of the Date class using the
new features described above.

FIG-16.11

Date Class Diagram

 Date

- day : int
- month: int
- year: int
- DAYSINYEAR = 365

- ToJDN(): long
- FromJDN(long) : Date
«constructor» + Date(in d:int, in m:int, in y:int)
+ SetDate(in d:int, in m:int, in y:int)
+ GetDayOfWeek() :int
+ IsLeapYear() : bool
+ GetDay() : int
+ GetMonth() : int
+ GetYear() : int
+ operator+(in d:int) : Date
+ operator-(in dt:Date) : Date
+ operator==(in dt:Date) : bool
+ operator+=(in d:int):Date
+ operator++() : Date
+ operator++(f:int) : Date
+ operator--() : Date
+ operator--(d:int) : Date
+ GetDaysInYear() : int
+GetDAYSINYEARconst() : int
«friend» + operator<<(in ct:ostream, in dt:Date):ostream
«friend» +operator>>(in cn:istream, out Date):istream
«friend» +operator+(in d:int, in dt:Date):Date

558 Hands On C++17: Starting Classes

In addition, we would need to create mini-specs for each operation mentioned in the
class diagram.

Visualising An Object
The class diagram is an essential tool when designing a new class, but a more informal
way of looking at a Date object, which, at this early stage in the learning process,
may give us a greater insight into how objects operate is shown in FIG-16.12.

FIG-16.12

How an Object Operates One way to visualise an object is to

think of the private areas of the object
as being enclosed in an impenetrable
wall.

The public methods act as gateways
giving us access to those private areas.

day month year

ToJDN FromJDN

day month year

ToJDN FromJDN

GetDay

GetMonth

GetYear

SetDateint,int,int

SetDateint,int

GetDayOfWeek

IsLeapYear

Only a few
public methods

of the Date
class are shown

Some of the public methods allow us
to obtain a copy of a private value.

Some make use of the private values
to derive new information.

Yet other methods allow the private
values to be changed. These methods
have safeguards in their coding to ensure
invalid values are rejected.

When a Date object is used in other
code, only the public properties are
“visible”.

day month year

ToJDN FromJDN

GetDay

day month year

ToJDN FromJDN

GetDayOfWeek

day month year

ToJDN FromJDN

SetDateint,int,int

GetDay

GetMonth

GetYear

SetDateint,int,int

SetDateint,int

GetDayOfWeek

IsLeapYear

Two versions
of SetDate()

Hands On C++17: Starting Classes 559

Student Class
We’ve spent most of this chapter constructing the Date class. Obviously, as an
introduction to classes, we’ve made use of a very simple class. And, although we’ve
looked at various types of operations we can add to a class, we’ve done little with the
type of attributes that can be used within a class.

In fact, so far we’ve only used int attributes (one of which was static). But of course,
we can have float, char, bool attributes as well as arrays, pointers, structs, and even
objects.

To demonstrate a larger range of attribute types, we’ll create another class, Student,
which contains details of a college student along with their marks for six exams. The
class diagram for Student is shown in FIG-16.13.

The code for most of the new class is shown in FIG-16.14.

FIG-16.12
(continued)

How an Object Operates

Friend functions, although not part of a class, are allowed access to the private
properties of objects of that class.

day month year

ToJDN FromJDN

operator<<

FIG-16.13

Student Class Diagram

 Student

-name : string
-sex : char
-attending : bool
-marks : int[6]

«constructor» + Student(n:string, s:char, at:bool)
+SetName(in n : string)
+SetSex(in s:char)
+SetAttending(in at:bool)
+SetMark(in mrk:int, in ex:int)
+GetName():string
+GetSex():char
+GetAttending():bool
+GetMark(in ex:int):int
+GetAverageMark():double
«friend» + operator<<(ostream&, Student&):ostream&

560 Hands On C++17: Starting Classes

FIG-16.14

Student Class Code

#include <iostream>
using namespace std;

class Student
{
 private:
	 	 char	name[21]{	“”	};
 char sex{ ‘?’ };
 bool attending{ true };
 int marks[6]{ 0 };
 public:
 Student(const char*, char, bool = true);
	 	 void	SetName(char*);
 void SetSex(char);
 void SetAttending(bool);
 void SetMark(int, int);
	 	 char*	GetName();
 char GetSex();
 bool GetAttending();
 int GetMark(int);
 double GetAverageMark();

 friend ostream& operator<<(ostream&, Student&);
};

//*************************************
//*** Student class Operations ***
//*************************************

Student::Student(const char* n, char s, bool at)
{
 strcpy(name, n);
 s = toupper(s);
 if (s == ‘M’ || s == ‘F’)
 sex = s;
 attending = at;
}

//*** Set the student’s name to n ***
void	Student::SetName(char	*	n)
{
 strcpy(name, n);
}

//*** Set student’s sex to s ***
void Student::SetSex(char s)
{
 s = toupper(s);
 if (s == ‘M’ || s == ‘F’)
 sex = s;
}

//*** Set student’s attendence status ***
void Student::SetAttending(bool at)
{
 attending = at;
}

Hands On C++17: Starting Classes 561

FIG-16.14
(continued)

Student Class Code

//***	Set	student’s	mark	for	specified	exam	***
void Student::SetMark(int mrk, int ex)
{
 //*** If not valid exam, return ***
 if (ex < 0 || ex > 5)
 return;
 //*** If not valid mark, return ***
 if (mrk < 0 || mrk > 100)
 return;
 //*** Store mark ***
 marks[ex] = mrk;
}

//*** Return student’s name ***
char*	Student::GetName()
{
 return name;
}

//*** Return student’s attendence status ***
bool Student::GetAttending()
{
 return attending;
}

//*** Return student’s exam mark ***
int Student::GetMark(int ex)
{
 if (ex < 0 || ex > 5)
	 	 return	-1;
 return marks[ex];
}

//*** Return student’s average mark ***
double Student::GetAverageMark()
{//	TO	BE	CODED}

//*** Display contents of student object ***
ostream& operator<<(ostream& ct, Student& st)
{//TO	BE	CODED}

int main()
{
	 Student	st1(“Madeline	Bray”,	‘F’);
	 Student	st2(“Nicholas	Nickleby”,’M’);
	 Student	st3(“Ada	Clare”,	‘F’,	false);
	 Student	st4(“Richard	Carstone”,	‘M’);
 //*** Assign random marks ***
 for (int ex = 0; ex < 6; ex++)
 st1.SetMark(rand() % 101, ex);
 for (int ex = 0; ex < 6; ex++)
 st2.SetMark(rand() % 101, ex);
 for (int ex = 0; ex < 6; ex++)
 st3.SetMark(rand() % 101, ex);
 for (int ex = 0; ex < 6; ex++)
 st4.SetMark(rand() % 101, ex);
 //*** Display object contents ***
 cout << st1 << endl;
 cout << st2 << endl;
 cout << st3 << endl;
 cout << st4 << endl;
}

562 Hands On C++17: Starting Classes

The first array in our Student class is the name attribute which makes use of an array
of type char.

In any modern C++ code we would use a string class object (covered in Chapter 20)
for storing data such as the student’s name but if we ever encounter existing code
from a few years back it may well use an array of char or a char pointer to store
strings. If you’re never going to encounter older C++ code, feel free to skip over this
topic.

Using char Pointers

Although very useful, standard arrays can be a bit problematic. Make them too small
and we cannot store all our data; make them too large and we waste space. In the case
of string constants, C++ solves this problem by reserving exactly the space required.

Older code might use this same approach when storing a string value by employing
a pointer in conjunction with the new command to reserve the exact amount of space
required. For example, in the Student class we could use a char pointer rather than a
char array for the name, it would be:

class Student
{
 private:
 char* name;
 char sex;
 ...

A function which sets the name attribute in objects of this class would be coded as:
void	Student::SetName(const	char*	n)
{
 //*** If no new name, exit ***
 if (n == nullptr)
 return;
 //*** Delete any space already being used ***
 if (name != nullptr)
 delete[]name;
 //*** Create enough space for the new name ***
	 name	=	new	char[strlen(n)+1];	//Extra	byte	for	final	null
 //*** Copy name into this new space ***
 strcpy(name,n);
}

When we use a pointer as an attribute or parameter, it’s important that any method
which accesses that attribute checks for the value nullptr (meaning the pointer does
not reference a data area) and handles that situation appropriately. In the above
method we can see a parameter guard to check against n containing null and that
space is only deallocated if name is not set to null.

Activity 16.41

Start a new project, StudentClass, and implement the code given above.

Add the code for the two missing methods, GetAverageMark() and
operator<<(). GetAverageMark() should return the average of the six marks.

operator<<() should display the contents of the complete object and finish with
the average mark. The attribute attending should be displayed as “attending” or
“not attending”.

Hands On C++17: Starting Classes 563

When a class makes use of dynamically allocated space, it becomes important that
we add a destructor to the class which deletes any allocated space.

Student::~Student()
{
 if(name != nullptr)
 delete [] name;
}

We might be asking at this point, why not use a smart pointer? That way we could
avoid having to delete the allocated space in the destructor. However, we must
remember, we’re only likely to find this way of doing things in older code before the
string class and smart pointers were introduced.

Overloading the Assignment Operator
Classes containing pointers to dynamically allocated space present another problem
when we try to copy the contents of one object to another (see FIG-16.15).

Activity 16.42

Modify StudentClass so that the name attribute is implemented as a char
pointer (which should have an initial value of nullptr).

Make any other necessary changes. Check that the program operates exactly as
before.

FIG-16.15

The Trouble with
Pointers

When an object, st1, contains a pointer
to some other space...

...and we copy the contents to another
object from the same class, the two
objects end up referencing the same data
area.

The trouble with this situation is that
changing the name in one object destroys
the space still referenced by the other.

To solve this problem, we need to
overload the assignment operator so that
each pointer references its own unique
data area.

name sex age

Amy Dorrit

st1

name sex age name sex age

Amy Dorrit

st1 st2

st2 = st1;

name sex age name sex age

Amy DorritAmy Dorrit

st1 st2

st2 = st1;

name sex age name sex age

Pet Meagles

st1 st2

st1.SetName(”Pet Meagles”);

???

564 Hands On C++17: Starting Classes

Now that we’ve experienced the problems of the default assignment operator, we can
correct the problem with the following code:

//*** Copies a Details object to current Details object ***
Student& Student::operator=(Student& st)
{
 //*** Delete any space already being used ***
 if (name != nullptr)
 delete[]name;
 //*** Set up space for copy of name ***
 int size = strlen(st.name)+1;
 name = new char[size];
 //*** Copy name ***
 strcpy(name, st.name);
 //*** Copy sex ***
 sex = st.sex;
 //*** Copy attending ***
 attending = st.attending;
 //*** Copy marks ***
 for(int c = 0; c < 6; c++)
 marks[c] = st.marks[c];
 //*** Return reference to updated object ***
 return *this;
}

The function returns a reference to the updated object. This allows the operator to be
used in situations such as

st3 = st2 = st1; //All Detail objects

The assignment operator is closely related to the copy constructor: if we need to
create code for one of these methods, we will almost certainly have to create near
identical code for the other.

For example, in the Details class, with the name attribute now implemented as a
pointer, the code

Student st2(st1);

will require exactly the same logic to copy the contents of st1 to st2 as we employed
in the operator=() method.

Activity 16.43

Modify StudentClass so that the program logic is:

 Create Student objects st1 to st4 (as before)
 Copy st1 to object st2
 Display the contents of st1 and st2
 Change the name in st1 to “Pet Meagles”
 Display the contents of st1 and st2

What happens when you run the program?

 �
Expect the program to
crash!

Activity 16.44

Modify StudentClass, adding the = operator to the class.

How does this affect the results produced?

Hands On C++17: Starting Classes 565

There are even situations where we may be forgiven for thinking we are using the
assignment operator when, in fact, we are calling the copy constructor. For example,
in the line

Details st2 = st1;

it is the copy constructor that is called to copy the contents of dt1 to dt2. This is
because the assignment is being made as the object is being created. On the other
hand, the lines

Details st2;
st2 = st1;

first use the zero-argument constructor to create st2 and then the assignment operator
to copy st1 to st2.

const Methods

Back in Chapter 11, we saw that reference parameters are used in a function when we
want to update that parameter within the function. But a second reason for using a
reference parameter is that no copy is made of the actual parameter’s value. This can
save significant time and space when that parameter is a complex record structure or
object.

When we want to pass a parameter as a pass-by-reference value for the sake of
efficiency but without the intention to change any values held within the parameter,
we had the option to add the term const in the parameter list:

GetDayOfWeek(const Date& d)

This same option is open to us when creating methods within a class. For example,
if we wanted to make the parameter to the Detail class’s operator=() method a const,
we would start the method’s code with the line

Student& Student::operator=(const Student& dt)

Although making a parameter to a class method a const isn’t a problem, the same
can’t be said when the application programmer tries to write a function in the same
way. For example, let’s say we want to write a function that returns the number of
characters in a Student object’s name field. We could try writing this as

int	GetNameSize(const	Student&	st)
{
	 return	strlen(st.GetName());
}

Remember this is not a method of the Details class, but a separate function written
by the application programmer.

Activity 16.45

Modify StudentClass, adding a copy constructor to the class. Test the new code
by copying the contents of st1 to a new Student object using the line
 Student st5(st1);

Activity 16.46

Modify StudentClass, so that the = operator now uses a const parameter (two
lines of code need to be changed). Check that the program operates exactly as
before.

566 Hands On C++17: Starting Classes

When we call this function in main() with a line such as
cout	<<	GetNameSize(st1)	<<	endl;

and try to compile the code, we would be presented with a compilation error for the
line within GetNameSize().

The reason for our problem is relatively simple: we have stated that the parameter to
GetNameSize() is a const parameter. That means that st (the parameter) cannot be
modified in any way within the function. But the function calls a method of the
Student class, GetName(), and the compiler has no way of knowing if that method
modifies the contents of st. Because it does not know this, the compiler throws up an
error.

To solve this general problem, we need to tell the compiler which methods defined
within the Student class modify attributes of that class and which don’t.

For example, we know that the methods
SetName()
SetSex()
SetAttending()

all modify Student class attributes. On the other hand,
GetName()
GetSex()
GetAttending()

only retrieve the current values of attributes but do not change them.

To let the compiler know that a method does not modify any attribute within its own
class, we add the term const to the end of the function prototype. Hence, the Details
class code would now begin with:

class Student
{
 private:
 char* name{ nullptr };
 char sex{ ‘?’ };
 bool attending{ true };
 int marks[6]{ 0 };
 public:
 Student(const char*, char, bool = true);
 Student(const Student&);
	 	 void	SetName(const	char*);
 void SetSex(char);
 void SetAttending(bool);
 void SetMark(int, int);
	 	 char*	GetName() const;
 char GetSex() const;
 bool GetAttending() const;
 int GetMark(int) const ;
 double GetAverageMark() const;

Activity 16.47

Modify SudentClass, adding GetNameSize() as a standard function and using
the function to display the size of the name in st1.

Try compiling your code (there will be an error) .

Hands On C++17: Starting Classes 567

 Student& operator=(const Student&);
 ~Student();

 friend ostream& operator<<(ostream&, Student&);
};

The need for const does not apply to friend functions.

The functions themselves must also include the const term in their heading as in the
code

char*	Student::GetName()const
{
 return name;
}

const Methods and char Arrays Attributes

There is one situation where declaring a const method can cause a slight problem.
Let’s assume we have declared a Trivial class and made use of it as shown in FIG-
16.16.

Activity 16.48

Modify StudentClass, so that the appropriate methods are defined with a const
ending and check that the program now executes.

FIG-16.16

Trivial Class

#include <iostream>

using namespace std;

class	Trivial
{
 private:
 char name[31];
 public:
	 	 void	SetName(const	char*);
	 	 char*	GetName()	const;
};

void	Trivial::SetName(const	char*	n)
{
 if(n != nullptr)
 strncpy(name, n, 30);
}

char*	Trivial::GetName()	const
{
 return name;
}

int main()
{
	 Trivial	tv;
	 tv.SetName(“Libby”);
	 cout	<<	tv.GetName()	<<	endl;
}

568 Hands On C++17: Starting Classes

The problem is that, since we have declared GetName() as a const method, C++ will
not return a pointer to the data in case the pointer is dereferenced and used to modify
the data - hence the compilation error.

However, if we declare the return value to be a pointer to a const value, then C++
will be mollified and allow the compilation. So, to have the program compile we need
to change the prototype and heading for GetName() to read

const	char*	GetName()	const

Object Pointers
Just as we can create pointers which reference basic data types and record structures,
so we can create pointers to class objects. For example, we could create a pointer to
a Student object using the line:

Student* stptr;

The most likely use of such a pointer is to have it reference a dynamically allocated
object as in:

stptr = new Student;

The statement above will create a new object, executing its zero-argument constructor
to initialise the object’s attributes, and assign the start address of the object to stptr.
If we have written a constructor that accepts arguments, that can be used in the
creation of the object:

stptr	{new	Student(“Henry	Gowan”,’M’)};

Once the object has been created and referenced by the pointer, we use the same
syntax to access the public properties of the object as we employed earlier with
record (struct) pointers. Hence, we could retrieve the name held in the object with the
expression

stptr->GetName()

which dereferences the pointer to gain access to the object’s elements.

Activity 16.49

Create a new project called TrivialClass, and create a source file containing the
code given above.

What happens when you attempt to compile the code?

Activity 16.50

Change the appropriate two lines in TrivialClass and rerun your project.

Activity 16.51

Modify StudentClass, so that st1 and st2 are pointers to Student objects (with
st3 and st4 remaining as standard objects). Change the output statements where
necessary to display the contents of all four objects.

Hands On C++17: Starting Classes 569

Objects and Arrays
An Array of Objects

If we require several objects of the same type, we are free to create an array of
objects. For example, we might write

Student group[4];

When we create an array of objects in this way, it is the zero-argument constructor
that is used to initialise each of the objects. If the class does not have a zero-argument
constructor, then attempting to create the array will produce a compilation error.

Accessing public properties of the object requires a combination of array element
access and record field access. Hence, to execute the GetName() method of the third
object in the array we would use the term

group[2].GetName()

Arrays of Class Pointers

Another option when handling several objects from the same class is to have an array
of class pointers. For example, we could create space for five Date pointers with the
line:

Date* event[5];

Of course, if we do this, then we must also create space for each object before using
it:

for(int c = 0; c <=4; c++)
 event[c] = new Details;

We have already seen that the main advantage of such a system is to ensure, by
writing robust methods, that the data held is not corrupted by allowing invalid values
to be assigned.

Time Class
Like most new concepts it takes a bit of experience before we become fully
understanding of all the subtleties behind those ideas.

To help gain a better grasp of coding classes as well as setting up code that we will
revisit in later chapters, the Activity that follows will get you to develop a new class,
Time, from scratch.

The class diagram for the new class is shown in Activity 16.53.

Activity 16.52

Modify StudentClass so that all four Student objects are stored in a Student
class array called group. Assign the same values as before to the objects and
display their contents.

Activity 16.53

Modify StudentClass so that it uses an array of pointers rather than an array of
objects.

570 Hands On C++17: Starting Classes

Of course, to accompany a class diagram, we would expect to see mini-specs for each
of the operations stated in the diagram. However, in this case, since much of what is
required shares a close similarity to methods already coded for the Date class, we’ll
show just two mini-specs here.

Those are for the private methods, ToSeconds() and FromSeconds().

Class : Time
Operation : ToSeconds
Parameters
 In : None
 Out : result : int
Attributes
 Read : hour, minute, second
 Written : None
Pre-condition : None
Post-condition : result = hour *3600 + minute*60+second
Description : Sets result to the number of seconds since midnight to the
 current time.

Class : Time
Operation : FromSeconds
Parameters
 In : s : int
 Out : result : Time
Attributes
 Read : None
 Written : None
Pre-condition : None
Post-condition : result.hour = s/3600
 result.minute = (s - result.hour*3600)/60
 result.second = s%60
Description : Converts s seconds into hours, minutes and seconds
 storing the value in result.

Activity 16.54

Start a new project called TimeClass and develop all of the code necessary to
define a Time class as shown below. Do not code the methods yet. �

Remember a UML class
diagram doesn’t tell
us everything about a
method’s coding. For
example, it does not tell
us if we should use const
values, or reference values
or a pointer. It does not tell
us if a method should be
declared as const. These
are things that are normally
decided at a later stage or
in further documentation.

 Time

- hour : int
- minute: int
- second: int

- ToSeconds(): int

Hands On C++17: Starting Classes 571

Summary
■ A class is a blueprint for a structure containing both data and related

operations.

■ This combining of the data and operations is known as encapsulation.

■ The elements of a class are collectively known as properties, features or
members.

Activity 16.54 (continued)

Make your own decision on the use of const, and references based on the
classes covered previously in this chapter.

 Time

- hour : int
- minute: int
- second: int

- ToSeconds(): int
- FromSeconds(int) : Time
«constructor» + Time(in h:int, in m:int, in s:int)
+ SetTime(in h:int, in m:int, in s:int);
+ GetHour() :int
+ GetMinute() : int
+ GetSecond() : int
+ GetMonth() : int
+ operator+(in t:Time) : Time
+ operator+=(t:Time)
+ operator-(in t:Time) : Time
+ operator-=(in t:Time)
+ operator++() : Time
+ operator++(f:int) : Time
+ operator--() : Time
+ operator--(d:int) : Time
+ operator==(in t:Time) : bool
+ operator!=(in t:Time):bool
+ operator>(in t:Time) : bool
+ operator>=(in t:Time):bool
+ operator<(in t:Time) : bool
+ operator<=(in t:Time):bool
«friend» + operator<<(in ct:ostream, in tm:Time):ostream

Activity 16.55

In project TimeClass implement all of the operations for the Time class and
create a main() function to test one arithmetic operator, one relational operator
and the << operator.

The constructor and SetTime() method should allow the hour attribute to be set
to values above 23 but not below zero. No upper limit will be useful when an
object of this type is used to represent a duration time rather than a clock time.

572 Hands On C++17: Starting Classes

■ The data elements of a class are known as attributes.

■ The tasks of a class are known as operations.

■ An object is a program component which realises a class specification.

■ An object is also called an instance of a class.

■ A class diagram is a rectangle split into three spaces. These contain: the class
name; the attributes’ names and types, and the operations’ names, parameters
and return type.

■ When designing a class, use:

 + to mark a public feature
 - to mark a private one
 = value to assign a value to a named constant
 _ underline to mark a static feature
 «constructor» to mark a constructor
 «destructor» to mark a destructor.

■ In C++, a class is defined using the term class.

■ When coded, the operations of a class are known as methods.

■ There are two parts to coding a class: the class declaration and the methods’
code.

■ The call operator is the name given to the set of open and close parentheses.

■ A functor is any class that defines a method for the call operator.

■ Inline methods can be coded within the class declaration or marked with the
keyword inline.

■ Properties of a class can be marked as public or private.

■ When coding the methods of a class, the class name and the scope resolution
operator must precede the method name.

■ C++ automatically adds a zero-argument constructor, a copy constructor, an
assignment operator, and a destructor to every class.

■ The default copy constructor and assignment operator copy the attribute values
in one object to the corresponding attributes in another object.

■ The default constructors, the assignment operator and destructor can be
overridden by defining new operations within the class.

■ A constructor cannot return a value.

■ A destructor cannot return a value or take parameters.

■ All methods within a class can be overloaded.

■ A program using an object can access only its public properties.

■ A class constructor is run automatically when an object is created.

■ If an object is created with the value of an existing object, the copy constructor
is executed.

■ The class destructor is run automatically when an object is deleted.

■ A program will, where possible, automatically make use of a class’s

Hands On C++17: Starting Classes 573

constructors to convert another type to an object of that class.

■ To stop a constructor being used automatically to convert other values, start the
definition of each constructor with the term explicit.

■ When constructors are declared as explicit, then conversions to an object must
be made explicit.

■ Data hiding limits access to the features of a class when using an object of that
class.

■ C++ maintains a pointer called this which references the current object whose
features are being accessed.

■ Constants can be defined within a class.

■ Attributes of a class can be marked as static.

■ There is only a single copy of each static attribute (not one in each object).

■ Methods can also be declared as static.

■ Static features in a class exist even before any object of that class has been
created.

■ Public static features can be accessed using the format
 class name :: static feature name

■ The code within a static methods cannot access non-static attributes of its
class.

■ When overloading the insertion (>>) and extraction (<<) operators, to display
an object, the code must create standard functions rather than operations of the
class.

■ Standard functions can have access to the private features of a class by
declaring the functions as friends of the class.

■ When an attribute of a class is a pointer, make sure that the copy constructor
and assignment operator handle the pointer appropriately.

■ A method which does not modify the value of any class attribute should add
the term const to the end of its declaration and heading.

■ Only methods marked as const have access to the attributes of an object or
parameter marked as const.

574 Hands On C++17: Starting Classes

Solutions
Activity 16.1

Beach ball characteristics include:
 Size
 Colour
 Weight
 Material used
Operations include:
 Inflate
 Deflate
 Throw
 Catch
 Bounce

Activity 16.2
a) Class
b) Object
c) Class
d) Object

Activity 16.3

Activity 16.4

Activity 16.5

Activity 16.6

Activity 16.7
Code for DateClass:

#include <iostream>
using namespace std;

//*** Class declaration ***
class Date
{
 public:
 int day;
 int month;
 int year;

 void SetDate(int, int, int);
 int GetDayOfWeek();
 bool IsLeapYear();
};

Activity 16.8
The code should compile.

Activity 16.9
Code for ImperialDistanceClass:

#include <iostream>
using namespace std;

class ImperialDistance
{
 public:
 int yards;
 int feet;
 int inches;

 void SetDistance(int,int,int);
	 	 double	ConvertToMetric();
};

//**************************************
//*** ImperialDistance Class Methods ***
//**************************************

// *** Sets distance to y yds, f ft, and i in ***
void ImperialDistance::SetDistance(int y, int f,
int i)
{
 //*** If any parameter invalid, exit ***
 if (i < 0 || i > 11 || f < 0 || f > 2 || y < 0)
 return;
 //*** Assign distance ***
 yards = y;
 feet = f;
 inches = i;
}

// *** Returns equivalent distance in metres ***
double	ImperialDistance::ConvertToMetric()

 ImperialDistance

yards
feet
inches

SetDistance
ConvertToMetric

 ImperialDistance

yards : int
feet : int
inches : int

SetDistance(y:int,f:int,i:int)
ConvertToMetric():double

 ImperialDistance

yards : int
feet : {0..2}
inches : {0..11}

SetDistance(y:int,f:int,i:int)
ConvertToMetric():double

Class : ImperialDistance
Operation : setDistance
Parameters
 In : y : int
 f : int
 i : int
 Out : None
Attributes
 Read : None
 Written : yards, feet, inches
Pre-condition : y,f,i forms a valid Imperial distance
Post-condition : yards = y
 feet = f
 inches = i
Description : Sets the distance to y yards, f feet, i inches.

Hands On C++17: Starting Classes 575

{
 return ((yards*36 + feet*12 + inches)*0.0254);
}

int main(){}

Activity 16.10
The supplied date fell on a Saturday.

Activity 16.11
Since the parameters to SetDate() are invalid, the attributes of
d1 are never assigned values and so the random values within
the memory assigned to those attributes are displayed.

Activity 16.12
Coding for main() in ImperialDistanceClass:

int main()
{

 ImperialDistance dist; // ImperialDistance object

 // *** Set distance ***
 dist.SetDistance(0,0,0);

 // *** Display distance ***
	 cout	<<	dist.yards	<<	“	yards		“	<<	dist.feet	<<	
 “	feet		“	<<	dist.inches	<<	“	inches	“	<<	endl;
}

When we change the call to SetDistance() to use the invalid
parameters 2,3,10, we have a similar situation to that of the
last Activity. The parameters to SetDistance() are invalid
and hence the attributes of the distance objects retain their
original random values which are displayed on the screen.

Activity 16.13
Modified code for DateClass:

#include <iostream>
using namespace std;

class Date
{
 public:
 int day;
 int month;
 int year;

 void SetDate(int, int, int);
 void SetDate(int,int);
 int GetDayOfWeek();
 bool IsLeapYear();
};

//**************************************
//*** Date Class Methods ***
//**************************************
// *** Sets the date to d/m/y ***
void Date::SetDate(int d, int m, int y)
{
 // *** Days in each month of year ***
 int daysinmonth[] = {0, 31,28,31, 30,31,30,
 31,31,30, 31,30,31};
 //*** If month invalid, exit ***
 if (m < 1 || m > 12)
 return;
 //*** Add 1 to days in February if leap year ***
 daysinmonth[2] += (y%400 == 0)||(y%4 == 0 &&
 y%100 != 0);
 //*** If days in month invalid, exit ***
 if (d <1 || d > daysinmonth[m])
 return;
 //*** If year less than 1, exit ***
 if (y < 1)
 return;
 //*** Assign date ***
 day = d;
 month = m;
 year = y;

}

//	***	Sets	date	using	days-into-year	(diy)	and	year	
(y) ***
void Date::SetDate(int diy, int y)
{
 // *** Days in each month of year ***
 int daysinmonth[] = { 0, 31,28,31, 30,31,30,
 31,31,30, 31,30,31 };
 //*** If leap year add one day to February ***
 daysinmonth[2] += (y % 400 == 0) || (y % 4 == 0
 && y % 100 != 0);
 //*** Calculate month ***
 int remaining = diy;
 int m = 0;
 while (remaining > 0)
 {
 m++;
	 	 remaining	-=	daysinmonth[m];
 }
 remaining += daysinmonth[m];
 //*** Set date ***
 SetDate(remaining, m, y);
}

// *** Returns the day of the week of a date ***
int Date::DayOfWeek()
{
	 int	M,	modifiedyear,	C,	Y;
 //*** Calculate M ***
 M = (month + 9) % 12 + 1;
	 //***	Calculate	modified	year	***
	 modifiedyear	=	year	-	M	/	11;
 //*** Calculate C ***
	 C	=	modifiedyear	/	100;
 //*** Calculate Y ***
	 Y	=	modifiedyear	%	100;
 //*** Calculate day of week ***
	 int	dayofweek	=	((static_cast<int>(2.6	*	M	-	0.2)	
 +	day	+	Y	+	Y/4	+	C/4	-	2*C)%7+7)%7;
 return dayofweek;
}

// *** Returns true if year is a leap year ***
bool Date::IsLeapYear()
{
 return ((year%400 == 0)||(year%4 == 0 &&
 year%100 != 0));
}

int main()
{
 // *** Day names ***
	 char	daynames[7][10]	=
 {“Sunday”,”Monday”,”Tuesday”,”Wednesday”,	
 ”Thursday”,”Friday”,”Saturday”};

 Date d1; // Date object

 // *** Set date ***
 d1.SetDate(60,2021);

 // *** Display date details ***
 cout << d1.day << ‘/’ << d1.month << ‘/’ <<
 d1.year	<<	“	was	a	“	<<	daynames[d1.DayOfWeek()]	
 << endl;
}

Note that the final line of our new method uses a call to the
original SetDate() to store the date. This makes sure only
valid dates can be stored.

Activity 16.14
Modified code for DateClass:

#include <iostream>
using namespace std;

class Date
{
 public:
 int day;
 int month;
 int year;

 Date();

576 Hands On C++17: Starting Classes

 void SetDate(int, int, int);
 void SetDate(int,int);
 int GetDayOfWeek();
 bool IsLeapYear();
};

//**************************************
//*** Date Class Methods ***
//**************************************

//*** Initialise new Date objects to 1/1/2001 ***
Date::Date()
{
 day = 1;
 month = 1;
 year = 2001;
}

// *** Sets the date to d/m/y ***
void Date::SetDate(int d, int m, int y)
{
 // *** Days in each month of year ***
 int daysinmonth[] = {0, 31,28,31, 30,31,30,
 31,31,30, 31,30,31};
 //*** If month invalid, exit ***
 if (m < 1 || m > 12)
 return;
 //*** Add 1 to days in February if leap year ***
 daysinmonth[2] += (y%400 == 0)||(y%4 == 0 &&
 y%100 != 0);
 //*** If days in month invalid, exit ***
 if (d <1 || d > daysinmonth[m])
 return;
 //*** If year less than 1, exit ***
 if (y < 1)
 return;
 //*** Assign date ***
 day = d;
 month = m;
 year = y;
}

//	***	Sets	date	using	days-into-year	(diy)	and	year	
(y) ***
void Date::SetDate(int diy, int y)
{
 // *** Days in each month of year ***
 int daysinmonth[] = { 0, 31,28,31, 30,31,30,
 31,31,30, 31,30,31 };
 //*** If leap year add one day to February ***
 daysinmonth[2] += (y % 400 == 0) || (y % 4 == 0
 && y % 100 != 0);
 //*** Calculate month ***
 int remaining = diy;
 int m = 0;
 while (remaining > 0)
 {
 m++;
	 	 remaining	-=	daysinmonth[m];
 }
 remaining += daysinmonth[m];
 //*** Set date ***
 SetDate(remaining, m, y);
}

// *** Returns the day of the week of a date ***
int Date::DayOfWeek()
{
	 int	M,	modifiedyear,	C,	Y;
 //*** Calculate M ***
 M = (month + 9) % 12 + 1;
	 //***	Calculate	modified	year	***
	 modifiedyear	=	year	-	M	/	11;
 //*** Calculate C ***
	 C	=	modifiedyear	/	100;
 //*** Calculate Y ***
	 Y	=	modifiedyear	%	100;
 //*** Calculate day of week ***
	 int	dayofweek	=	((static_cast<int>(2.6	*	M	-	0.2)	
 +	day	+	Y	+	Y/4	+	C/4	-	2*C)%7+7)%7;
 return dayofweek;
}

// *** Returns true if year is a leap year ***
bool Date::IsLeapYear()
{

 return ((year%400 == 0)||(year%4 == 0 &&
 year%100 != 0));
}

int main()
{
 // *** Day names ***
	 char	daynames[7][10]	=
 {“Sunday”,”Monday”,”Tuesday”,”Wednesday”,	
 ”Thursday”,”Friday”,”Saturday”};

 Date d1; // Date object

 // *** Set date ***
 d1.SetDate(29,2,2001);

 // *** Display date details ***
 cout << d1.day << ‘/’ << d1.month << ‘/’ <<
 d1.year	<<	“	was	a	“	<<	daynames[d1.DayOfWeek()]	
 << endl;
}

Since all Date objects default to 1/1/2001 the moment they
are created, when the attempt to assign an invalid date to d1
fails, the object retains the date 1/1/2001 which is displayed
and reported as being a Monday.

Activity 16.15
Modified code for ImperialDistanceClass:

#include <iostream>
using namespace std;

class ImperialDistance
{
 public:
 int yards;
 int feet;
 int inches;

 ImperialDistance();
 void SetDistance(int,int,int);
	 	 double	ConvertToMetric();
};

//**************************************
//*** ImperialDistance Class Methods ***
//**************************************

//*** Zeroises newly created distance objects ***
ImperialDistance::ImperialDistance()
{
 yards = 0;
 feet = 0;
 inches = 0;
}

// *** Sets the distance to y yards, f feet, and i
inches ***
void ImperialDistance::SetDistance(int y, int f,
int i)
{
 //*** If any parameter invalid, exit ***
 if (i < 0 || i > 11 || f < 0 || f > 2 || y < 0)
 return;
 //*** Assign distance ***
 yards = y;
 feet = f;
 inches = i;
}

// *** Returns equivalent distance in metres ***
double	ImperialDistance::ConvertToMetric()
{
 return ((yards*36 + feet*12 + inches)*0.0254);
}

int main()
{
 ImperialDistance dist; // ImperialDistance object

 // *** Set distance ***
 dist.SetDistance(2,3,10);

Hands On C++17: Starting Classes 577

 // *** Display distance ***
	 cout	<<	dist.yards	<<	“	yards		“	<<	dist.feet	
 <<	“	feet		“	<<	dist.inches	<<	“	inches	“<<endl;
}

When the invalid parameters are used with SetDistance(), the
object’s value remains set to zero.

Activity 16.16
Modified code for DateClass:

#include <iostream>
using namespace std;

class Date
{
 public:
 int day;
 int month;
 int year;

 Date();
 Date(int,int,int);
 void SetDate(int, int, int);
 void SetDate(int,int);
 int GetDayOfWeek();
 bool IsLeapYear();
};

//**************************************
//*** Date Class Methods ***
//**************************************

//*** Initialise new Date objects to 1/1/2001 ***
Date::Date()
{
 day = 1;
 month = 1;
 year = 2001;
}

//*** Initialise new Date objects to d/m/y ***
Date::Date(int d, int m, int y)
{
 // *** Days in each month of year ***
 int daysinmonth[] = {0, 31,28,31, 30,31,30,
 31,31,30,31,30,31};

 bool valid = true; // Parameters valid

 //*** If month invalid, invalid parameters ***
 if (m < 1 || m > 12)
 valid = false;
 //*** Add 1 to days in February if leap year ***
 daysinmonth[2] += (y%400 == 0)||(y%4 == 0 &&
 y%100 != 0);
 //*** If days invalid, invalid parameters ***
 if (d <1 || d > daysinmonth[m])
 valid = false;
 //*** If year less than 1, invalid parameters ***
 if (y < 1)
 valid = false;
 //*** Assign date ***
 if (valid)
 {
 day = d;
 month = m;
 year = y;
 }
 else
 {
 day = 1;
 month = 1;
 year = 2001;
 }
}

// *** Sets the date to d/m/y ***
void Date::SetDate(int d, int m, int y)
{
 // *** Days in each month of year ***
 int daysinmonth[] = {0, 31,28,31, 30,31,30,
 31,31,30, 31,30,31};
 //*** If month invalid, exit ***
 if (m < 1 || m > 12)

 return;
 //*** Add 1 to days in February if leap year ***
 daysinmonth[2] += (y%400 == 0)||(y%4 == 0 &&
 y%100 != 0);
 //*** If days in month invalid, exit ***
 if (d <1 || d > daysinmonth[m])
 return;
 //*** If year less than 1, exit ***
 if (y < 1)
 return;
 //*** Assign date ***
 day = d;
 month = m;
 year = y;
}

//	***	Sets	date	using	days-into-year	(diy)	and	year	
(y) ***
void Date::SetDate(int diy, int y)
{
 // *** Days in each month of year ***
 int daysinmonth[] = { 0, 31,28,31, 30,31,30,
 31,31,30, 31,30,31 };
 //*** If leap year add one day to February ***
 daysinmonth[2] += (y % 400 == 0) || (y % 4 == 0
 && y % 100 != 0);
 //*** Calculate month ***
 int remaining = diy;
 int m = 0;
 while (remaining > 0)
 {
 m++;
	 	 remaining	-=	daysinmonth[m];
 }
 remaining += daysinmonth[m];
 //*** Set date ***
 SetDate(remaining, m, y);
}

// *** Returns the day of the week of a date ***
int Date::DayOfWeek()
{
	 int	M,	modifiedyear,	C,	Y;
 //*** Calculate M ***
 M = (month + 9) % 12 + 1;
	 //***	Calculate	modified	year	***
	 modifiedyear	=	year	-	M	/	11;
 //*** Calculate C ***
	 C	=	modifiedyear	/	100;
 //*** Calculate Y ***
	 Y	=	modifiedyear	%	100;
 //*** Calculate day of week ***
	 int	dayofweek	=	((static_cast<int>(2.6	*	M	-	0.2)	
 +	day	+	Y	+	Y/4	+	C/4	-	2*C)%7+7)%7;
 return dayofweek;
}

// *** Returns true if year is a leap year ***
bool Date::IsLeapYear()
{
 return ((year%400 == 0)||(year%4 == 0 &&
 year%100 != 0));
}

int main()
{
 // *** Day names ***
	 char	daynames[7][10]	=	
 {“Sunday”,”Monday”,”Tuesday”,
 ”Wednesday”,”Thursday”,”Friday”,”Saturday”};

 Date d1(23,11,1963); // Date object

 // *** Display date details ***
 cout << d1.day << ‘/’ << d1.month << ‘/’ <<
 d1.year	<<	“	was	a	“	<<	daynames[d1.DayOfWeek()]	
 << endl;
}

Activity 16.17
In DateClass, the class declaration needs to be changed to:

class Date
{
 public:

578 Hands On C++17: Starting Classes

 int day;
 int month;
 int year;

 Date(int=1,int=1,int=2001);
 void SetDate(int, int, int);
 void SetDate(int,int);
 int GetDayOfWeek();
 bool IsLeapYear();
};

Note that the zero-argument constructor has been removed.

In main(), the parameters need to be removed when declaring
d1:

int main()
{
 // *** Day names ***
	 char	daynames[7][10]	=	
 {“Sunday”,”Monday”,”Tuesday”,	
 “Wednesday”,”Thursday”,”Friday”,”Saturday”};

 Date d1; // Date object

 // *** Display date details ***
 cout << d1.day << ‘/’ << d1.month << ‘/’ <<
 d1.year	<<	“	was	a	“	<<	daynames[d1.DayOfWeek()]	
 << endl;
}

Without a line to change the value in d1, the date displayed is
1/1/2001.

Activity 16.18
Modifications to ImperialDistanceClass:

Class declaration:

class ImperialDistance
{
public:
 int yards;
 int feet;
 int inches;

 ImperialDistance(int=0, int=0, int=0);
 void SetDistance(int, int, int);
	 double	ConvertToMetric();
};

Code for new constructor:
//*** Initialises newly created distance objects ***
ImperialDistance::ImperialDistance(int y, int f, int
i)
{
 bool valid{ true };
 //*** If yards invalid, invalid parameters ***
 if (y < 0)
 valid = false;

 //*** If feet invalid, invalid parameters ***
 if (f <0 || f > 2)
 valid = false;
 //*** If inches invalid, invalid parameters ***
 if (i < 0 || i > 11)
 valid = false;
 //*** Assign distance ***
 if (valid)
 {
 yards = y;
 feet = f;
 inches = i;
 }
 else
 {
 yards = 0;
 feet = 0;
 inches = 0;
 }
}

Modified code for main():

int main()
{

 ImperialDistance dist(2,3,10); // ImperialDistance
 object

 // *** Display distance ***
	 cout	<<	dist.yards	<<	“	yards		“	<<	dist.feet	
	 <<	“	feet		“	<<	dist.inches	<<	“	inches	“	<<	endl;
}

When an invalid distance is attempted, the distance remains
set at zero.

Activity 16.19
Code for DateClass’s main():

int main()
{
 Date d1(23,1,2001);

 //*** Create new Date object containing same date

 Date d2(d1);

 //*** Display value of new Date object ***
 cout << d2.day << ‘/’ << d2.month << ‘/’
 << d2.year << endl;
}

Activity 16.20
Code for DateClass’s main():

int main()
{
 Date d1(23,1,2001);

 //*** Create new Date object containing same date

 Date d2(d1);

 d2 = 21;

 //*** Display value of new Date object ***
 cout << d2.day << ‘/’ << d2.month << ‘/’
 << d2.year << endl;
}

The value displayed is 21/1/2001. The month and year values
are taken from the constructor’s defaults.

Activity 16.21
Modified code for DateClass declaration:

class Date
{
 public:
 int day;
 int month;
 int year;

 explicit Date(int=1,int=1,int=2001);
 void SetDate(int, int, int);
 void SetDate(int, int);
 int GetDayOfWeek();
 bool IsLeapYear();
};

This version creates a compilation error since 21 cannot be
automatically converted to a Date object.

Modified code for main() :

int main()

{
 Date d1(23,1,2001);

 //*** Create new Date object containing same date

 Date d2(d1);

 d2 = static_cast<Date>(21);

Hands On C++17: Starting Classes 579

 //*** Display value of new Date object ***
 cout << d2.day << ‘/’ << d2.month << ‘/’
 << d2.year << endl;
}

This version compiles and runs successfully.

Activity 16.22
The class declaration in DateClass should be changed to

class Date
{
 public:
 int day;
 int month;
 int year;

 explicit Date(int=1,int=1,int=2001);
 ~Date();
 void SetDate(int, int, int);
 void SetDate(int, int);
 int GetDayOfWeek();
 bool IsLeapYear();
};

and the code for the new destructor added:
Date::~Date()
{
	 cout	<<	“Date	object	deleted\n”;
};

The message Date object deleted should be displayed when
the program is run.

Activity 16.23
The new code for the Date declaration is:

class Date
{
 private:
 int day;
 int month;
 int year;
 public:
 explicit Date(int=1,int=1,int=2001);
 ~Date();
 void SetDate(int, int, int);
 void SetDate(int, int);
 int GetDayOfWeek();
 bool IsLeapYear();
};

No other changes are required.

The compilation fails. Error messages from the compiler
should be of the form:

‘Date::day’ : cannot access private member declared in class
‘Date’

Activity 16.24
The class declaration for Date becomes:

class Date
{
 private:
 int day;
 int month;
 int year;
 public:
 explicit Date(int=1,int=1,int=2001);
 void SetDate(int, int, int);
 void SetDate(int, int);
 int GetDayOfWeek();
 bool IsLeapYear();
 int GetDay();
 int GetMonth();
 int GetYear();
};

The code for the new methods is:

//*** Returns the value in attribute day ***
int Date::GetDay()
{
 return day;
}

//*** Returns the value in attribute month ***
int Date::GetMonth()
{
 return month;
}

//*** Returns the value in attribute year ***
int Date::GetYear()
{
 return year;
}

Modified code for main():
int main()
{
 Date d1(23,1,2001);

 //*** Create new Date object containing same date

 Date d2(d1);

 d2 = static_cast<Date>(21);

 //*** Display value of Date object ***
 cout << d2.GetDay() << ‘/’ << d2.GetMonth() << ‘/’
 << d2.GetYear() << endl;
}

Activity 16.25
The class declaration for Date becomes:

class Date
{
 private:
 int day;
 int month;
 int year;

 long	ToJDN();
 Date	FromJDN();

 public:
 explicit Date(int=1,int=1,int=2001);
 void SetDate(int, int, int);
 void SetDate(int, int);
 int DayOfWeek();
 bool IsLeapYear();
 int GetDay();
 int GetMonth();
 int GetYear();
};

The code for the new methods is:

//	***	Returns	the	JDN	of	the	date	***
long	Date::ToJDN()
{
	 int	a	=	(14	-	month)/12;
	 int	m	=	month	+	12*a	-	3;
	 int	y	=	year	+	4800	-	a;
 long result = day + (153*m + 2) / 5 + 365*y + y/4
 -	y/100	+	y/400		-	32045;
 return result;
}

//	***	Sets	date	to	eqivalent	of	JDN	***
Date	Date::FromJDN(long	jdn)
{
			int	f	=	jdn	+	1401+(((4	*	jdn	+	274277)/
 146097)*3)/4	-38;
 int e = 4 * f + 3;
 int g = (e % 1461)/4;
 int h = 5 * g + 2;
 Date d;
 d.day = (h % 153)/5 + 1;
 d.month = (h/153 + 2) % 12 + 1;
			d.year	=	e/1461	-	4716	+	(12	+	2	-	d.month)/12;	
 return d;
}

580 Hands On C++17: Starting Classes

Activity 16.26
The new code for the Date declaration is:

class Date
{
 private:
 int day;
 int month;
 int year;

	 	 long	ToJDN();
	 	 Date	FromJDN(long);

 public:
 explicit Date(int=1,int=1,int=2001);
 void SetDate(int, int, int);
 void SetDate(int, int);
 int GetDayOfWeek();
 bool IsLeapYear();
 int GetDay();
 int GetMonth();
 int GetYear();
 Date operator+(int);
};

The code for the new method is:
//*** Add d days to date ***
Date Date::operator+(int d)
{
	 Date	dt	=	FromJDN(ToJDN()+d);
 return dt;
}

The code for main() is:
int main()
{

 Date d1(30,5,2023);

	 //***	Add	7	days	***
	 d1=d1+7;

 //*** Display date ***
 cout << d1.GetDay() << ‘/’ << d1.GetMonth() <<
 ‘/’ << d1.GetYear() << endl;

}

Activity 16.27
The new code for the Date declaration is:

class Date
{
 private:
 int day;
 int month;
 int year;

	 	 long	ToJDN();
	 	 Date	FromJDN(long);

 public:
 explicit Date(int=1,int=1,int=2001);
 void SetDate(int, int, int);
 void SetDate(int, int);
 int GetDayOfWeek();
 bool IsLeapYear();
 int GetDay();
 int GetMonth();
 int GetYear();
 Date operator+(int);
	 	 int	operator-(Date);
	 	 Date	operator-(int);
 bool operator==(Date);
 bool operator!=(Date);
};

The code for the three new methods is:
//*** Returns a Date calculated by subtracting d
days to date ***
Date	Date::operator-(int	d)

{
	 Date	dt	=	FromJDN(ToJDN()	-	d);
 return dt;
}

//***	Returns	the	difference	in	days	between	two	
dates ***
int	Date::operator-(Date	dt)
{
	 int	result	=	ToJDN()	-	dt.ToJDN();
 return result;
}

//*** Returns true if two dates are equal ***
bool Date::operator==(Date dt)
{
	 return	(ToJDN()	==	dt.ToJDN());
}

//*** Returns true if two dates are not equal ***
bool Date::operator!=(const Date dt) const
{
	 return	(ToJDN()	!=	dt.ToJDN());
}

One possible version of main() used to test these methods is:
int main()
{
 Date d1(30,5,2013);

	 //	***	New	date	7	days	before	first	date	***
	 Date	d2=	d1	-	7;

	 //***	Test	if	dates	are	equal	***
 if (d1 == d2)
	 	 cout	<<	“The	dates	are	the	same\n”;
 if (d1 != d2)
 {
	 	 cout	<<	“The	dates	are	different\n”;
	 	 cout	<<	“There	are	“	<<	d1	-	d2	<<	
 “	days	between	the	two	dates\n”;
 } //*** Display dates ***
	 cout	<<	“d1:	“<<	d1.GetDay()	<<	‘/’	<<	
 d1.GetMonth() << ‘/’ << d1.GetYear() << endl;
	 cout	<<	“d2:	“<<	d2.GetDay()	<<	‘/’	<<	
 d2.GetMonth() << ‘/’ << d2.GetYear() << endl;
}

Of course, we could have used else rather than a second if
statement in the code given above – but that would not test
the != operator.

Activity 16.28
The final version of TestCallOperator:

#include <iostream>
using namespace std;

class A
{
 public:
	 	 A()	{	cout	<<	“Constructor	called\n”;	};
 int operator()(int, int);
};

int A::operator()(int v, int w)
{
 return (v * w);
}

int main()
{
 A test;
 cout << test(3,5) << endl;
}

Activity 16.29
The new Date class declaration is:

class Date
{
 private:

Hands On C++17: Starting Classes 581

 int day;
 int month;
 int year;

	 	 long	ToJDN();
	 	 Date	FromJDN(long);

 public:
 explicit Date(int=1,int=1,int=2001);
 void SetDate(int, int, int);
 void SetDate(int, int);
 int GetDayOfWeek();
 bool IsLeapYear();
 int GetDay();
 int GetMonth();
 int GetYear();
 Date operator+(int);
	 	 int	operator-(Date);
	 	 Date	operator-(int);
 bool operator==(Date);
 bool operator!=(Date);
 void operator+=(int);
};

The code for the new method is:
//*** Adds a given number of days to the date ***
void Date::operator+=(int d)
{
	 *this	=	FromJDN(ToJDN()+d);
}

To test the new method, main() is rewritten as:
int main()
{
 Date d1(23,12,1980);

 //*** Add 10 days ***
 d1 += 10;

 //*** Display date ***
 cout << d1.GetDay() << ‘/’ << d1.GetMonth() << ‘/’
 << d1.GetYear() << endl;
}

Activity 16.30
Modified coded for IsLeapYear():

// *** Returns true if year is a leap year ***
bool Date::IsLeapYear()
{
	 return	((this->year%400	==	0)||(this->year%4	==	0	
 &&	this->year%100	!=	0));
}

Activity 16.31
The new Date class declaration is:

class Date
{
 private:
 int day;
 int month;
 int year;

	 	 long	ToJDN();
	 	 Date	FromJDN(long);

 public:
 explicit Date(int=1,int=1,int=2001);
 void SetDate(int, int, int);
 void SetDate(int, int);
 int GetDayOfWeek();
 bool IsLeapYear();
 int GetDay();
 int GetMonth();
 int GetYear();
 Date operator+(int);
	 	 int	operator-(Date);
	 	 Date	operator-(int);
 bool operator==(Date);
 bool operator!=(Date);
 void operator+=(int);
 Date operator++();
 Date operator++(int);
	 	 Date	operator--();
	 	 Date	operator--(int);

};

The code for the new methods is:
//*** Adds one day to date, returns new date ***
Date Date::operator++()
{
	 *this	=	FromJDN(ToJDN()+1);
 return *this;
}

//*** Adds one day to date, returns original date

Date Date::operator++(int)
{
 Date result = *this;
	 *this	=	FromJDN(ToJDN()+1);
 return result;
}

//*** Subtracts one day from date, returns new date

Date	Date::operator--()
{
	 *this	=	FromJDN(ToJDN()-1);
 return *this;
}

//*** Subtracts one day from date, returns original
date ***
Date	Date::operator--(int)
{
 Date result = *this;
	 *this	=	FromJDN(ToJDN()-1);
 return result;
}

The code for main() is:

int main()
{
 Date d1(31, 12, 2000);

	 //***	Add	a	day	(prefix)	***
 Date d2 = ++d1;
 //*** Display dates ***
	 cout	<<	“PREFIX++\n”;
	 cout	<<	“d1=”<<	d1.GetDay()	<<	‘/’	
 << d1.GetMonth() << ‘/’ << d1.GetYear() << endl;
	 cout	<<	“d2=”<<	d2.GetDay()	<<	‘/’	
 << d2.GetMonth() << ‘/’ << d2.GetYear() << endl;

	 //***	Add	a	day	(postfix)	***
 d1 = Date(31, 12, 2000);
 d2 = d1++;
 //*** Display dates ***
	 cout	<<	“POSTFIX++\n”;
	 cout	<<”d1=”	<<	d1.GetDay()	<<	‘/’	
 << d1.GetMonth() << ‘/’ << d1.GetYear() << endl;
	 cout	<<”d2=”	<<	d2.GetDay()	<<	‘/’	
 << d2.GetMonth() << ‘/’ << d2.GetYear() << endl;

	 //***	Subtract	a	day	(prefix)	***
 d1 = Date(31, 12, 2000);
	 d2	=	--d1;
 //*** Display dates ***
	 cout	<<	“PREFIX--\n”;
	 cout	<<	“d1=”	<<	d1.GetDay()	<<	‘/’	
 << d1.GetMonth() << ‘/’<< d1.GetYear() << endl;
	 cout	<<	“d2=”	<<	d2.GetDay()	<<	‘/’	
 << d2.GetMonth() << ‘/’<< d2.GetYear() << endl;

	 //***	Subtract	a	day	(postfix)	***
 d1 = Date(31, 12, 2000);
	 d2	=	d1--;
 //*** Display dates ***
	 cout	<<	“POSTFIX--\n”;
	 cout	<<	“d1=”	<<	d1.GetDay()	<<	‘/’	
 << d1.GetMonth() << ‘/’ << d1.GetYear() << endl;
	 cout	<<	“d2=”	<<	d2.GetDay()	<<	‘/’	
 << d2.GetMonth() << ‘/’ << d2.GetYear() << endl;
}

Activity 16.32
When you attempt to compile the code, an error message
such as

582 Hands On C++17: Starting Classes

“Date::operator=(const Date &)” (declared implicitly)
cannot be referenced -- it is a deleted function

Activity 16.33
Modified code for Date class:

class Date
{
 private:
	 	 const	int	DAYSINYEAR	=	365;
 int day;
 int month;
 int year;

	 	 long	ToJDN();
	 	 Date	FromJDN(long);

 public:

 explicit Date(int=1,int=1,int=2001);
 void SetDate(int, int, int);
 void SetDate(int, int);
 int GetDayOfWeek();
 inline bool IsLeapYear();
 int GetDay();
 int GetMonth();
 int GetYear();
 Date operator+(int);
	 	 int	operator-(Date);
	 	 Date	operator-(int);
 bool operator==(Date)
 bool operator!=(Date);;
 void operator+=(int);
 Date operator++();
 Date operator++(int);
	 	 Date	operator--();
	 	 Date	operator--(int);
 Date& operator=(const Date&);
 int GetDaysInYear();
};

//*** Initialises new date object to d/m/y ***
Date::Date(int d, int m, int y)
{
 // *** Days in each month of year ***
 int daysinmonth[] = {0, 31,28,31, 30,31,30,
 31,31,30,31,30,31};

 bool valid = true; // Parameters valid

 //*** If month invalid, invalid parameters ***
 if (m < 1 || m > 12)
 valid = false;
 //*** Add 1 to days in February if leap year ***
 daysinmonth[2] += (y%400 == 0)||(y%4 == 0 &&
 y%100 != 0);
 //*** If days in month invalid, invalid parameters

 if (d <1 || d > daysinmonth[m])
 valid = false;
 //*** If year less than 1, invalid parameters ***
 if (y < 1)
 valid = false;
 //*** Assign date ***
 if (valid)
 {
 day = d;
 month = m;
 year = y;
 }
 else
 {
 day = 1;
 month = 1;
 year = 2001;
 }
}

//*** Copies date d to date ***
Date& Date::operator=(const Date& d)
{
 day = d.day;
 month = d.month;
 year = d.year;
 return *this;

}

//*** Returns number of days in year ***
int Date::GetDaysInYear()
{
	 return	DAYSINYEAR	+	IsLeapYear();
}

Modified code for main():
int main()
{
 Date d1(31, 12, 2000);
 cout << d1.GetDay() << ‘/’ << d1.GetMonth() << ‘/’
 << d1.GetYear() << endl;
	 cout	<<	“That	year	has	“	<<	d1.GetDaysInYear()	
 <<	“	days\n”;

}

Activity 16.34
Modified code for Date class:

class Date
{
 private:
 int day;
 int month;
 int year;

	 	 long	ToJDN();
	 	 Date	FromJDN(long);

 public:
	 	 static	const	int	DAYSINYEAR	=	365;
 explicit Date(int=1,int=1,int=2001);
 void SetDate(int, int, int);
 void SetDate(int, int);
 int GetDayOfWeek();
 inline bool IsLeapYear();
 int GetDay();
 int GetMonth();
 int GetYear();
 Date operator+(int);
 int	operator-(Date);
	 	 Date	operator-(int);
 bool operator==(Date);
 bool operator!=(Date);
 void operator+=(int);
 Date operator++();
 Date operator++(int);
	 	 Date	operator--();
	 	 Date	operator--(int);
 int GetDaysInYear();
};

main() is coded as:
int main()
{
	 cout	<<	“DAYSINYEAR	value	is	“	<<	Date::DAYSINYEAR	
 << endl;
 Date d1;
	 cout	<<	“DAYSINYEAR	value	is	“	<<	d1.DAYSINYEAR	
 << endl;
}

Activity 16.35
Modified code for Date:

class Date
{
 private:
	 	 static	const	int	DAYSINYEAR	=	365;
 int day;
 int month;
 int year;

	 	 long	ToJDN();
	 	 Date	FromJDN(long);

 public:
 explicit Date(int=1,int=1,int=2001);
 void SetDate(int, int, int);
 void SetDate(int, int);

Hands On C++17: Starting Classes 583

 int GetDayOfWeek();
 inline bool IsLeapYear();
 int GetDay();
 int GetMonth();
 int GetYear();
 Date operator+(int);
	 	 int	operator-(Date);
	 	 Date	operator-(int);
 bool operator==(Date);
 bool operator!=(Date);
 void operator+=(int);
 Date operator++();
 Date operator++(int);
	 	 Date	operator--();
	 	 Date	operator--(int);
 int GetDaysInYear();
	 	 int	GetDAYSINYEARconst();
};

New method’s code:
//***	Returns	the	value	of	DAYSINYEAR	***
int	Date::GetDAYSINYEARconst()
{
	 return	DAYSINYEAR;
}

Although the first version of main(),
int main()
{
 Date d1;
	 cout	<<	“DAYSINYEAR	value	is	“	<<	
 d1.GetDAYSINYEARconst()	<<	endl;
}

operates correctly, using the expression

Date::GetDAYSINYEARconst()

will not compile. You can only use the class name in
accessing a property of a class if that property (in this case the
GetDAYSINYEARconst()) is defined as static.

Activity 16.36
Modified code for Date:

class Date
{
 private:
	 	 static	const	int	DAYSINYEAR	=	365;
 int day;
 int month;
 int year;

	 	 long	ToJDN();
	 	 Date	FromJDN(long);

 public:
 explicit Date(int=1,int=1,int=2001);
 void SetDate(int, int, int);
 void SetDate(int, int);
 int DayOfWeek();
 inline bool IsLeapYear();
 int GetDay();
 int GetMonth();
 int GetYear();
 Date operator+(int);
	 	 int	operator-(Date);
	 	 Date	operator-(int);
 bool operator==(Date);
 bool operator!=(Date);
 void operator+=(int);
 Date operator++();
 Date operator++(int);
	 	 Date	operator--();
	 	 Date	operator--(int);
 int GetDaysInYear();
 static int	GetDAYSINYEARconst();
};

The program will now compile when using the term
Date::GetDAYSINYEARconst().

Activity 16.37
Modified code for Date:

//*** Class declaration ***
class Date
{
 private:
 int day;
 int month;
 int year;

	 	 long	ToJDN();
	 	 Date	FromJDN(long);

 public:
	 	 static	const	int	DAYSINYEAR	=	365;
 static int count;
 explicit Date(int = 1, int = 1, int = 2001);
 void SetDate(int, int, int);
 void SetDate(int, int);
 int GetDayOfWeek();
 bool IsLeapYear();
 int GetDay();
 int GetMonth();
 int GetYear();
 Date operator+(int);
	 	 int	operator-(Date);
	 	 Date	operator-(int);
 bool operator==(Date);
 bool operator!=(Date);
 void operator+=(int);
 Date operator++();
 Date operator++(int);
	 	 Date	operator--();
	 	 Date	operator--(int);
 int GetDaysInYear();
	 	 static	int	GetDAYSINYEARconst();
 static int GetCount();
 ~Date();
};
int Date::count = 0;

Modified code for Date constructor:

//*** Initialise new Date objects to d/m/y ***
Date::Date(int d, int m, int y)
{
 // *** Days in each month of year ***
 int daysinmonth[] = { 0, 31,28,31, 30,31,30,31,
 31,30,31,30,31 };

 bool valid = true; // Parameters valid

 //*** If month invalid, invalid parameters ***
 if (m < 1 || m > 12)
 valid = false;
 //*** Add 1 to days in February if leap year ***
 daysinmonth[2] += (y % 400 == 0) || (y % 4 == 0
 && y % 100 != 0);
 //*** If days invalid, invalid parameters ***
 if (d <1 || d > daysinmonth[m])
 valid = false;
 //*** If year less than 1, invalid parameters ***
 if (y < 1)
 valid = false;
 //*** Assign date ***
 if (valid)
 {
 day = d;
 month = m;
 year = y;
 }
 else
 {
 day = 1;
 month = 1;
 year = 2001;
 }
 //*** Add one to count of Date objects **
 count++;
}

New methods’ code:
//*** Returns the number of Date object existing ***
int Date::GetCount()
{
 return count;
}

584 Hands On C++17: Starting Classes

//*** Destructor decrements count ***
Date::~Date()
{
 //*** Decrement count of Date objects ***
	 count--;
}

Code for main():
int main()
{
	 cout	<<	“There	are	“	<<	Date::GetCount()	
 <<	“	Date	objects\n”;
 Date dt1(23, 11, 1963);
	 cout	<<	“There	are	“	<<	Date::GetCount()	
 <<	“	Date	objects\n”;
 {
 Date dt2;
	 	 cout	<<	“There	are	“	<<	Date::GetCount()	
 <<	“	Date	objects\n”;
 }
	 cout	<<	“There	are	“	<<	Date::GetCount()	
 <<	“	Date	objects\n”;
}

The program should display the following lines:

 There are 0 Date objects
 There are 1 Date objects
 There are 2 Date objects
 There are 1 Date objects

Activity 16.38
Modified code for Date:

class Date
{
 private:
	 	 static	const	int	DAYSINYEAR	=	365;
 static int count;

 int day;
 int month;
 int year;

	 	 long	ToJDN();
	 	 Date	FromJDN(long);

 public:
 explicit Date(int=1,int=1,int=2001);
 void SetDate(int, int, int);
 void SetDate(int, int);
 int GetDayOfWeek();
 inline bool IsLeapYear();
 int GetDay();
 int GetMonth();
 int GetYear();
 Date operator+(int);
	 	 int	operator-(Date);
	 	 Date	operator-(int);
 bool operator==(Date);
 bool operator!=(Date);
 void operator+=(int);
 Date operator++();
 Date operator++(int);
	 	 Date	operator--();
	 	 Date	operator--(int);
 int GetDaysInYear();
	 	 static	int	GetDAYSINYEARconst();
 static int GetCount();
 Date::~Date();

 friend ostream& operator<<(ostream&, Date&);
};
int Date::count = 0;

Code for operator<<:
//*** Displays a Date ***
ostream& operator<<(ostream& ct, Date& dt)
{
 ct << dt.day <<’/’ << dt.month << ‘/’ << dt.year;
 return ct;
}

Code for main():
int main()
{
 Date d1(23,11,1963);
 cout << d1 << endl;
}

Activity 16.39
Modified code for Date:

class Date
{
 private:
	 	 static	const	int	DAYSINYEAR	=	365;
 static int count;

 int day;
 int month;
 int year;

 	 long	ToJDN();
	 	 Date	FromJDN(long);

 public:
 explicit Date(int=1,int=1,int=2001);
 void SetDate(int, int, int);
 void SetDate(int, int);
 int GetDayOfWeek();
 inline bool IsLeapYear();
 int GetDay();
 int GetMonth();
 int GetYear();
 Date operator+(int);
	 	 int	operator-(Date);
	 	 Date	operator-(int);
 bool operator==(Date);
 bool operator!=(Date);
 void operator+=(int);
 Date operator++();
 Date operator++(int);
	 	 Date	operator--();
	 	 Date	operator--(int);
 int GetDaysInYear();
	 	 static	int	GetDAYSINYEARConst();
 static int GetCount();
 Date::~Date();

 friend ostream& operator<<(ostream&, Date&);
 friend istream& operator>>(istream&, Date&);

};
int Date::count = 0;

Code for operator>>:
//*** Accepts a Date value from the keyboard ***
istream& operator>>(istream& cn, Date& dt)
{
	 scanf(“%d/%d/%d”,&dt.day,	&dt.month,	&dt.year);
 return cn;
}

Code for main():
int main()
{
 Date d1;
	 cout	<<	“Enter	date	:	“;
 cin >> d1;
 cout << d1 << endl;
}

Activity 16.40
Modified code for operator>>:

//*** Accepts a Date value from the keyboard ***
istream& operator>>(istream& cn, Date& dt)
{
 int d,m,y;
 //*** Read date ***
	 scanf(“%d/%d/%d”,&d,	&m,	&y);
	 //***	Transfer	values	to	date	object	***
 dt.SetDate(d,m,y);
 return cn;
}

Hands On C++17: Starting Classes 585

Activity 16.41
Modified code for DateClass:

class Date
{
 private:
	 	 static	const	int	DAYSINYEAR	=	365;
 static int count;

 int day;
 int month;
 int year;

 	 long	ToJDN();
	 	 Date	FromJDN(long);

 public:
 explicit Date(int=1,int=1,int=2001);
 void SetDate(int, int, int);
 void SetDate(int, int);
 int GetDayOfWeek();
 inline bool IsLeapYear();
 int GetDay();
 int GetMonth();
 int GetYear();
 Date operator+(int);
	 	 int	operator-(Date);
	 	 Date	operator-(int);
 bool operator==(Date);
 bool operator!=(Date);
 void operator+=(int);
 Date operator++();
 Date operator++(int);
	 	 Date	operator--();
	 	 Date	operator--(int);
 int GetDaysInYear();
	 	 static	int	GetDAYSINYEARConst();
 static int GetCount();
 Date::~Date();

 friend ostream& operator<<(ostream&, Date&);
 friend istream& operator>>(istream&, Date&);
 friend Date operator+(int, Date&);
};
int Date::count = 0;

Code for operator+:
Date operator+(int days, Date& d)
{
	 Date	dt	=	d.FromJDN(d.ToJDN()	+	days);
 return dt;
}

Test code in main():
int main()
{
 Date d1(23,11,1963);
 Date d2;
 d2 = d1 + 10;
 cout << d2 << endl;
}

Activity 16.42
Code for StudentClass:

#include <iostream>
using namespace std;

class Student
{
 private:
	 	 char	name[21]{	“”	};
 char sex{ ‘?’ };
 bool attending{ true };
 int marks[6]{ 0 };
 public:
 Student(const char*, char, bool = true);
	 	 void	SetName(char*);
 void SetSex(char);
 void SetAttending(bool);
 void SetMark(int, int);
	 	 char*	GetName();
 char GetSex();
 bool GetAttending();
 int GetMark(int);
 double GetAverageMark();

 friend ostream& operator<<(ostream&, Student&);
};

Student::Student(const char* n, char s, bool at)
{
 strcpy(name, n);
 s = toupper(s);
 if (s == ‘M’ || s == ‘F’)
 sex = s;
 attending = at;
}

//*** Set the student’s name to n ***
void	Student::SetName(char	*	n)
{
 strcpy(name, n);
}

//*** Set student’s sex to s ***
void Student::SetSex(char s)
{
 s = toupper(s);
 if (s == ‘M’ || s == ‘F’)
 sex = s;
}

//*** Set student’s attendence status ***
void Student::SetAttending(bool at)
{
 attending = at;
}

//***	Set	student’s	mark	for	specified	exam	***
void Student::SetMark(int mrk, int ex)
{
 //*** If not valid exam, return ***
 if (ex < 0 || ex > 5)
 return;
 //*** If not valid mark, return ***
 if (mrk < 0 || mrk > 100)
 return;
 //*** Store mark ***
 marks[ex] = mrk;
}

//*** Return student’s name ***
char*	Student::GetName()
{
 return name;
}

//*** Return student’s sex ***
char Student::GetSex()
{
 return sex;
}

//*** Return student’s attendence status ***
bool Student::GetAttending()
{
 return attending;
}

//*** Return student’s exam mark ***
int Student::GetMark(int ex)
{
 if (ex < 0 || ex > 5)
	 	 return	-1;
 return marks[ex];
}

//*** Return student’s average mark ***
double Student::GetAverageMark()
{
 double total{ 0.0 };
 for (auto v : marks)
 total += v;
 return total / 6.0;
}

//*** Display contents of student object ***
ostream& operator<<(ostream& ct, Student& st)
{
	 ct	<<	st.name	<<	“		“	<<	st.sex	<<	“		“;
 if (st.attending)
	 	 ct	<<	“attending		“;
 else
	 	 ct	<<	“not	attending		“;

586 Hands On C++17: Starting Classes

 for (int ex = 0; ex < 6; ex++)
	 	 ct	<<	st.marks[ex]	<<	“		“;
 ct << st.GetAverageMark() << endl;
 return ct;
}

int main()
{
	 Student	st1(“Madeline	Bray”,	‘F’);
	 Student	st2(“Nicholas	Nickleby”,’M’);
	 Student	st3(“Ada	Clare”,	‘F’,	false);
	 Student	st4(“Richard	Carstone”,	‘M’);
 //*** Assign random marks ***
 for (int ex = 0; ex < 6; ex++)
 st1.SetMark(rand() % 101, ex);
 for (int ex = 0; ex < 6; ex++)
 st2.SetMark(rand() % 101, ex);
 for (int ex = 0; ex < 6; ex++)
 st3.SetMark(rand() % 101, ex);
 for (int ex = 0; ex < 6; ex++)
 st4.SetMark(rand() % 101, ex);
 //*** Display object contents ***
 cout << st1 << endl;
 cout << st2 << endl;
 cout << st3 << endl;
 cout << st4 << endl;
}

Activity 16.43
Modified code in StudentClass:

Changes to Student class declaration:
class Student
{
 private:
 char* name{ nullptr };
 char sex{ ‘?’ };
 bool attending{ true };
 int marks[6]{ 0 };
 public:
 Student(const char*, char, bool = true);
	 	 void	SetName(char*);
 void SetSex(char);
 void SetAttending(bool);
 void SetMark(int, int);
	 	 char*	GetName();
 char GetSex();
 bool GetAttending();
 int GetMark(int);
 double GetAverageMark();
 ~Student();

 friend ostream& operator<<(ostream&, Student&);
};

Changes to Student constructor:
Student::Student(const char* n, char s, bool at)
{
 name = new char[strlen(n) + 1];
 strcpy(name, n);
 s = toupper(s);
 if (s == ‘M’ || s == ‘F’)
 sex = s;
 attending = at;
}

Changes to Student SetName():
//*** Set the student’s name to n ***
void	Student::SetName(char	*	n)
{
 //*** If no new name, exit ***
 if (n == nullptr)
 return;
 //*** Delete any space already being used ***
 if (name != nullptr)
 delete[]name;
 //*** Create enough space for the new name ***
 name = new char[strlen(n) + 1];
 //*** Copy name into this new space ***
 strcpy(n, name);
}

New code for Student destructor:

Student::~Student()
{
 if(name != nullptr)
 delete [] name;
}

Activity 16.44
The program is likely to crash or show unpredictable results.

Activity 16.45
Modified code in StudentClass:

Changes to Student class declaration:
class Student
{
 private:
 char* name{ nullptr };
 char sex{ ‘?’ };
 bool attending{ true };
 int marks[6]{ 0 };
 public:
 Student(const char*, char, bool = true);
	 	 void	SetName(const	char*);
 void SetSex(char);
 void SetAttending(bool);
 void SetMark(int, int);
	 	 char*	GetName();
 char GetSex();
 bool GetAttending();
 int GetMark(int);
 double GetAverageMark();
 Student& operator=(Student&);
 ~Student();

 friend ostream& operator<<(ostream&, Student&);
};

New code for Student operator==():
//*** Copies a Details object to current Details
object ***
Student& Student::operator=(Student& st)
{
 //*** Delete any space already being used ***
 if (name != nullptr)
 delete[]name;
 //*** Set up space for copy of name ***
 int size = strlen(st.name) + 1;
 name = new char[size];
 //*** Copy name ***
 strcpy(name, st.name);
 //*** Copy sex ***
 sex = st.sex;
 //*** Copy attending ***
 attending = st.attending;
 //*** Copy marks ***
 for (int c = 0; c < 6; c++)
 marks[c] = st.marks[c];
 //*** Return reference to updated object ***
 return *this;
}

The program should operate correctly this time.

Activity 16.46
Modified code in StudentClass:

Changes to Student class declaration:
class Student
{
 private:
 char* name{ nullptr };
 char sex{ ‘?’ };
 bool attending{ true };
 int marks[6]{ 0 };
 public:
 Student(const char*, char, bool = true);
 Student(const Student&);
 	 void	SetName(const	char*);
 void SetSex(char);
 void SetAttending(bool);

Hands On C++17: Starting Classes 587

 void SetMark(int, int);
	 	 char*	GetName();
 char GetSex();
 bool GetAttending();
 int GetMark(int);
 double GetAverageMark();
 Student& operator=(Student&);
 ~Student();

 friend ostream& operator<<(ostream&, Student&);
};

Code for copy constructor:
Student::Student(const Student& st)
{
 //*** Delete any space already being used ***
 if (name != nullptr)
 delete[]name;
 //*** Set up space for copy of name ***
 int size = strlen(st.name) + 1;
 name = new char[size];
 //*** Copy name ***
 strcpy(name, st.name);
 //*** Copy sex ***
 sex = st.sex;
 //*** Copy attending ***
 attending = st.attending;
 //*** Copy marks ***
 for (int c = 0; c < 6; c++)
 marks[c] = st.marks[c];
}

Modified code for main():
int main()
{
	 Student	st1(“Madeline	Bray”,	‘F’);
	 Student	st2(“Nicholas	Nickleby”,’M’);
	 Student	st3(“Ada	Clare”,	‘F’,	false);
	 Student	st4(“Richard	Carstone”,	‘M’);
 //*** Assign random marks ***
 for (int ex = 0; ex < 6; ex++)
 st1.SetMark(rand() % 101, ex);
 for (int ex = 0; ex < 6; ex++)
 st2.SetMark(rand() % 101, ex);
 for (int ex = 0; ex < 6; ex++)
 st3.SetMark(rand() % 101, ex);
 for (int ex = 0; ex < 6; ex++)
 st4.SetMark(rand() % 101, ex);
 //*** Create new object equal to st1 ***
 Student st5(st1);
 //*** Display contents of both objects ***
 cout << st1 << endl;
 cout << st5 << endl;
}

Activity 16.47
Modified code in StudentClass:

Changes to prototype of operator=():
Student& operator=(const Student&);

Changes to the code for operator=():
Student& operator=(const Student& st)

Activity 16.48
Modified code in StudentClass:

Prototype for GetNameSize():
//*** Standard function prototypes ***
int	GetNameSize(const	Student&);

The above is placed after the code for all operations of the
Student class.

Code for GetNameSize():
//************************************
//*** Standard functions ***
//************************************

//*** Returns number of characters in st.name ***

int	GetNameSize(const	Student&	st)
{
	 return	strlen(st.GetName());
}

The above is placed after the code for main().

Code for main():
int main()
{
	 Student	st1(“Madeline	Bray”,	‘F’);
	 Student	st2(“Nicholas	Nickleby”,’M’);
	 Student	st3(“Ada	Clare”,	‘F’,	false);
	 Student	st4(“Richard	Carstone”,	‘M’);
 //*** Assign random marks ***
 for (int ex = 0; ex < 6; ex++)
 st1.SetMark(rand() % 101, ex);
 for (int ex = 0; ex < 6; ex++)
 st2.SetMark(rand() % 101, ex);
 for (int ex = 0; ex < 6; ex++)
 st3.SetMark(rand() % 101, ex);
 for (int ex = 0; ex < 6; ex++)
 st4.SetMark(rand() % 101, ex);
 //*** Display number of chars in st1’s name ***
	 cout	<<	st1.GetName()	<<	“	contains	“	
 <<	GetNameSize(st1)	<<	“	characters\n”;
}

The code fails to compile because the parameter to
GetNameSize() is defined as a constant.

Activity 16.49
Modified code in StudentClass:

#include <iostream>
using namespace std;

class Student
{
 private:
 char* name{ nullptr };
 char sex{ ‘?’ };
 bool attending{ true };
 int marks[6]{ 0 };
 public:
 Student(const char*, char, bool = true);
 Student(const Student&);
	 	 void	SetName(const	char*);
 void SetSex(char);
 void SetAttending(bool);
 void SetMark(int, int);
	 	 char*	GetName()	const;
 char GetSex() const;
 bool GetAttending() const;
 int GetMark(int) const ;
 double GetAverageMark() const;
 Student& operator=(const Student&);
 ~Student();

 friend ostream& operator<<(ostream&, Student&);
};

Student::Student(const char* n, char s, bool at)
{
 name = new char[strlen(n) + 1]; //Extra byte for
 final	null
 strcpy(name, n);
 s = toupper(s);
 if (s == ‘M’ || s == ‘F’)
 sex = s;
 attending = at;
}

Student::Student(const Student& st)
{
 //*** Delete any space already being used ***
 if (name != nullptr)
 delete[]name;
 //*** Set up space for copy of name ***
 int size = strlen(st.name) + 1;
 name = new char[size];
 //*** Copy name ***
 strcpy(name, st.name);
 //*** Copy sex ***
 sex = st.sex;
 //*** Copy attending ***

588 Hands On C++17: Starting Classes

 attending = st.attending;
 //*** Copy marks ***
 for (int c = 0; c < 6; c++)
 marks[c] = st.marks[c];
}

//*** Set the student’s name to n ***
void	Student::SetName(const	char	*	n)
{
 //*** If no new name, exit ***
 if (n == nullptr)
 return;
 //*** Delete any space already being used ***
 if (name != nullptr)
 delete[]name;
 //*** Create enough space for the new name ***
 name = new char[strlen(n) + 1]; //Extra byte for
 final	null
 //*** Copy n into this new space ***
 strcpy(name,n);

}

//*** Set student’s sex to s ***
void Student::SetSex(char s)
{
 s = toupper(s);
 if (s == ‘M’ || s == ‘F’)
 sex = s;
}

//*** Set student’s attendence status ***
void Student::SetAttending(bool at)
{
 attending = at;
}

//***	Set	student’s	mark	for	specified	exam	***
void Student::SetMark(int mrk, int ex)
{
 //*** If not valid exam, return ***
 if (ex < 0 || ex > 5)
 return;
 //*** If not valid mark, return ***
 if (mrk < 0 || mrk > 100)
 return;
 //*** Store mark ***
 marks[ex] = mrk;
}

//*** Return student’s name ***
char*	Student::GetName()	const
{
 return name;
}

//*** Return student’s sex ***
char Student::GetSex() const
{
 return sex;
}

//*** Return student’s attendence status ***
bool Student::GetAttending() const
{
 return attending;
}

//*** Return student’s exam mark ***
int Student::GetMark(int ex) const
{
 if (ex < 0 || ex > 5)
	 	 return	-1;
 return marks[ex];
}

//*** Return student’s average mark ***
double Student::GetAverageMark() const
{
 double total{ 0.0 };
 for (auto v : marks)
 total += v;
 return total / 6.0;
}

//*** Copies a Details object to current Details
object ***
Student& Student::operator=(const Student& st)
{
 //*** Delete any space already being used ***

 if (name != nullptr)
 delete[]name;
 //*** Set up space for copy of name ***
 int size = strlen(st.name) + 1;
 name = new char[size];
 //*** Copy name ***
 strcpy(name, st.name);
 //*** Copy sex ***
 sex = st.sex;
 //*** Copy attending ***
 attending = st.attending;
 //*** Copy marks ***
 for (int c = 0; c < 6; c++)
 marks[c] = st.marks[c];
 //*** Return reference to updated object ***
 return *this;
}

Student::~Student()
{
 if (name != nullptr)
 delete[] name;
}

//*** Display contents of student object ***
ostream& operator<<(ostream& ct, Student& st)
{
	 ct	<<	st.name	<<	“		“	<<	st.sex	<<	“		“;
 if (st.attending)
	 	 ct	<<	“attending		“;
 else
	 	 ct	<<	“not	attending		“;
 for (int ex = 0; ex < 6; ex++)
	 	 ct	<<	st.marks[ex]	<<	“		“;
 ct << st.GetAverageMark() << endl;
 return ct;
}

//*** Standard function prototypes ***
int	GetNameSize(const	Student&);

int main()
{
	 Student	st1(“Madeline	Bray”,	‘F’);
	 Student	st2(“Nicholas	Nickleby”,’M’);
	 Student	st3(“Ada	Clare”,	‘F’,	false);
	 Student	st4(“Richard	Carstone”,	‘M’);
 //*** Assign random marks ***
 for (int ex = 0; ex < 6; ex++)
 st1.SetMark(rand() % 101, ex);
 for (int ex = 0; ex < 6; ex++)
 st2.SetMark(rand() % 101, ex);
 for (int ex = 0; ex < 6; ex++)
 st3.SetMark(rand() % 101, ex);
 for (int ex = 0; ex < 6; ex++)
 st4.SetMark(rand() % 101, ex);
 //*** Display number of chars in st1’s name ***
	 cout	<<	st1.GetName()	<<	“	contains	“	
 <<	GetNameSize(st1)	<<	“	characters\n”;
}

//*** Returns number of characters in st.name ***
int	GetNameSize(const	Student&	st)
{
	 return	strlen(st.GetName());
}

Activity 16.50
The compiler objects to the code trying to return a char*
value from Trivial::GetName().

Activity 16.51
The program now works as expected.

Activity 16.52
Changes to StudentClass:

Modified code for main():

Hands On C++17: Starting Classes 589

int main()
{
	 Student	*st1{	new	Student(“Madeline	Bray”,	‘F’)	};
	 Student	*	st2{	new	Student(“Nicholas	Nickleby”,
 ’M’) };
	 Student	st3(“Ada	Clare”,	‘F’,	false);
	 Student	st4(“Richard	Carstone”,	‘M’);
 //*** Assign random marks ***
 for (int ex = 0; ex < 6; ex++)
	 	 st1->SetMark(rand()	%	101,	ex);
 for (int ex = 0; ex < 6; ex++)
	 	 st2->SetMark(rand()	%	101,	ex);
 for (int ex = 0; ex < 6; ex++)
 st3.SetMark(rand() % 101, ex);
 for (int ex = 0; ex < 6; ex++)
 st4.SetMark(rand() % 101, ex);
 //*** Display object contents ***
 cout << *st1 << endl;
 cout << *st2 << endl;
 cout << st3 << endl;
 cout << st4 << endl;
}

Activity 16.53
Changes to StudentClass:

Modified code for main():
int main()
{
	 Student	group[4]	{Student(“Madeline	Bray”,	‘F’),	
 Student(“Nicholas	Nickleby”,’M’),
 Student(“Ada	Clare”,	‘F’,	false),	
 Student(“Richard	Carstone”,	‘M’)	};
 //*** Assign random marks ***
 for(int idx = 0; idx < 4; idx ++)
 for (int ex = 0; ex < 6; ex++)
 group[idx].SetMark(rand() % 101, ex);
 //*** Display objects’ contents ***
 for (auto v: group)
 cout << v << endl;
}

Activity 16.54
Changes to StudentClass:

Modified code for main():
int main()
{

 Student *group[4]
 {
	 	 new	Student(“Madeline	Bray”,	‘F’),	
	 	 new	Student(“Nicholas	Nickleby”,’M’),

	 	 new	Student(“Ada	Clare”,	‘F’,	false),	
	 	 new	Student(“Richard	Carstone”,	‘M’)	
 };
 //*** Assign random marks ***
 for(int idx = 0; idx < 4; idx ++)
 for (int ex = 0; ex < 6; ex++)
	 	 	 group[idx]->SetMark(rand()	%	101,	ex);
 //*** Display objects’ contents ***
 for (auto v: group)
 cout << *v << endl;
}

Activity 16.55
Code for TimeClass’s definition of Time:

#include <iostream>
using namespace std;

class	Time
{
 private:
 int hour;
 int minute;
 int second;

	 	 int	ToSeconds()	const;
	 	 Time	FromSeconds(int)	const;

 public:
	 	 Time(int	=	0,	int	=	0,	int	=	1);
	 	 void	SetTime(int,	int,	int);
	 	 int	GetHour()	const;
 int GetMinute() const;
 int GetSecond() const;
	 	 Time	operator+(const	Time&)	const;
	 	 Time&	operator+=(const	Time&);
	 	 Time	operator-(const	Time&)	const;
	 	 Time&	operator-=(const	Time&);
	 	 Time&	operator++();
	 	 Time	operator++(int);
	 	 Time&	operator--();
	 	 Time	operator--(int);
	 	 bool	operator==	(const	Time&)const;
	 	 bool	operator!=	(const	Time&)const;
	 	 bool	operator<(const	Time&)const;
	 	 bool	operator<=(const	Time&)const;
	 	 bool	operator>(const	Time&)const;
	 	 bool	operator>=(const	Time&)const;

 friend ostream& operator<<(ostream&,
 const	Time&);
};

Activity 16.56
Complete code for TimeClass:

#include <iostream>
using namespace std;

class	Time
{
 private:
 int hour;
 int minute;
 int second;

	 	 int	ToSeconds()	const;
	 	 Time	FromSeconds(int)	const;

 public:
	 	 Time(int	=	0,	int	=	0,	int	=	1);
	 	 void	SetTime(int,	int,	int);
	 	 int	GetHour()	const;
 int GetMinute() const;
 int GetSecond() const;
	 	 Time	operator+(const	Time&)	const;
	 	 Time&	operator+=(const	Time&);
	 	 Time	operator-(const	Time&)	const;
	 	 Time&	operator-=(const	Time&);
	 	 Time&	operator++();
	 	 Time	operator++(int);
	 	 Time&	operator--();
	 	 Time	operator--(int);
	 	 bool	operator==	(const	Time&)const;
	 	 bool	operator!=	(const	Time&)const;
	 	 bool	operator<(const	Time&)const;
	 	 bool	operator<=(const	Time&)const;
	 	 bool	operator>(const	Time&)const;
	 	 bool	operator>=(const	Time&)const;

 friend ostream& operator<<(ostream&,
 const	Time&);
};

//**
//***								Time	Class	Implementation									***
//**

//********************************
//*** Public Methods ***
//********************************
//*** Initalise time to h:m:s if valid else 0:0:0***
Time::Time(int	h,	int	m,	int	s)
{
 if (h < 0 || m < 0 || m > 59 || s < 0 || s > 59)
 {
 hour = 0;
 minute = 0;
 second = 0;
 }
 else
 {
 hour = h;
 minute = m;
 second = s;
 }

590 Hands On C++17: Starting Classes

}

//*** Sets time to h:m:s if this is valid ***
void	Time::SetTime(int	h,	int	m,	int	s)
{
 if (h < 0 || m < 0 || m > 59 || s < 0 ||
 s > 59)
 {
 return;
 }
 else
 {
 hour = h;
 minute = m;
 second = s;
 }
}

//*** Returns hour value ***
int	Time::GetHour()	const
{
 return hour;
}

//*** Returns hour value ***
int	Time::GetMinute()	const
{
 return minute;
}

//*** Returns hour value ***
int	Time::GetSecond()	const
{
 return second;
}

//*** Returns time of t + current time ***
Time	Time::operator+(const	Time&	t)	const
{
	 return	FromSeconds(ToSeconds()	+	t.ToSeconds());
}

//*** Adds time t to current time ***
Time&	Time::operator+=(const	Time&	t)
{
	 return	*this	=	FromSeconds(ToSeconds()	+	
t.ToSeconds());
 return *this;
}

//***	Returns	current	time		-	t	***
Time	Time::operator-(const	Time&	t)	const
{
	 return	FromSeconds(ToSeconds()	-	t.ToSeconds());
}

//*** Subtracts time t from current time ***
Time&	Time::operator-=(const	Time&	t)
{
	 return	*this	=	FromSeconds(ToSeconds()	-	
 t.ToSeconds());
 return *this;
}

//*** Adds 1 sec to time (pre) ***
Time&	Time::operator++()
{
	 *this	=	FromSeconds(ToSeconds()	+	1);
 return *this;
}

//*** Adds 1 sec to time (post) ***
Time	Time::operator++(int)
{
	 Time	result{	*this	};
	 *this	=	FromSeconds(ToSeconds()	+	1);
 return result;
}

//*** Subtracts 1 sec from time (pre) ***
Time&	Time::operator--()
{
	 *this	=	FromSeconds(ToSeconds()	-	1);
 return *this;
}

//*** Subtracts 1 sec from time (post) ***
Time	Time::operator--(int)
{
	 Time	result{	*this	};
	 *this	=	FromSeconds(ToSeconds()	-	1);
 return result;
}

//*** Returns true if times are equal ***
bool	Time::operator==(const	Time&	t)	const
{
	 return	(ToSeconds()	==	t.ToSeconds());
}

//*** Returns true if times are not equal ***
bool	Time::operator!=(const	Time&	t)	const
{
	 return	(ToSeconds()	!=	t.ToSeconds());
}

//*** Returns true if time < t ***
bool	Time::operator<(const	Time&	t)	const
{
	 return	(ToSeconds()	<	t.ToSeconds());
}

//*** Returns true if time <= t ***
bool	Time::operator<=(const	Time&	t)	const
{
	 return	(ToSeconds()	<=	t.ToSeconds());
}

//*** Returns true if time > t ***
bool	Time::operator>(const	Time&	t)	const
{
	 return	(ToSeconds()	>	t.ToSeconds());
}

//*** Returns true if time >= t ***
bool	Time::operator>=(const	Time&	t)	const
{
	 return	(ToSeconds()	>=	t.ToSeconds());
}

//********************************
//*** Private Methods ***
//********************************

//*** Converts current time to seconds ***
int	Time::ToSeconds()	const
{
 return hour * 3600 + minute * 60 + second;
}

//*** Converts seconds to hrs, mins, secs ***
Time	Time::FromSeconds(int	secs)	const
{
 if (secs < 0)
	 	 return	Time(0,	0,	0);
 int h = secs / 3600;
	 int	m	=	(secs	-	h	*	3600)	/	60;
 int s = secs % 60;

	 return	Time(h,	m,	s);
}

//********************************
//*** Friends ***
//********************************

//*** Displays the value of time t ***
ostream&	operator<<(ostream&	ct,	const	Time&	t)
{
 char timestr[9];

Hands On C++17: Starting Classes 591

	 sprintf(timestr,	“%02d:%02d:%02d”,	t.hour,	
 t.minute, t.second);
 ct << timestr;
 return ct;
}

int main()
{
	 Time	tm(2,	9,	6);
	 Time	tm2(6,	12,	57);
 tm += tm2;
 cout << tm << endl;
	 if	(tm	<	Time(9,	0,	0))
	 	 cout	<<	“Total	time	is	less	than	nine	hours\n”;
 else
	 	 cout	<<	“Total	time	is	nine	hours	or	more\n”;
}

The above code was executed twice with a total time less
than 9 hours and again with a total time greater than 9 hours.

592 Hands On C++17: Starting Classes

